

Contents

AM DSB-SC SSB DSB-TC Envelope of AM Waveform

Modulation

- Modulation is the process of converting a signal from its original form into another, "transmission ready" form
- Modulation \rightarrow Transmit \rightarrow Demodulation
- Why modulation?
 - Original signal is rarely in a form that is easy to tx How far can human voice be tx in the air without assistance?
- Modulation is the process of causing some parameter of the carrier signal to vary in relation to the message signal

Amplitude Modulation

- The message signal is represented by variations in the amplitude of the carrier signal
- The amplitude of the message signal is recovered from the amplitude of the carrier
- The frequency of the message signal is recovered from the rate of change in the amplitude of the carrier signal
- AM radio, FDM multiplexers

Modulator mixes two signals

 $y(t) = (A_{m} \cos w_{m} t)(A_{c} \cos w_{c} t)$ = $A_{m} A_{c} / 2[\cos (w_{c} + w_{m})t + \cos (w_{c} - w_{m})t]$ = $A_{m} A_{c} / 2[\cos 2\pi (f_{c} + f_{m})t + \cos 2\pi (f_{c} - f_{m})t]$

DSB-SC

 $BW_{AM} = 2 BW_{BB}$

Demodulation of DSB-SC

The original signal, $\cos w_c t$ is added at the demodulator $y(t) \cos w_c t = m(t) c(t) \cos w_c t$ $= m(t) A_c \cos w_c t \cos w_c t$ $= m(t) A_c \cos^2 w_c t$ $= m(t) A_{c} [1 + \cos 2w_{c}t]/2$ $= (A_m A_c/2) \cos w_m t + (A_m A_c/2) \cos w_m t \cos 2w_c t$ $= (A_m A_c/2) \cos w_m t + (A_m A_c/4) [\cos (2w_c + w_m)t]$ $+\cos(2w_{c} - w_{m})t]$

Demodulation of DSB-SC

After filtering, the same signal is obtained with which we started

DSB-SC technologies are often used for short-haul tx

The modulator/demodulator are very simple and inexpensive

SSB

- All the information of the original message signal appears in both sidebands
- Since two sidebands of the DSB system are redundant, one can be filtered out without loosing any information
- By passing the modulated signal y(t) = m(t)c(t) through a LPF before tx, the lower sideband is tx

SSB

(Advantages)

- SSB uses half the power and half the BW of DSB
- Often used for long-haul tx
- (Disadvantages)
 - The modulator is more complex

DSB-TC

The carrier signal c(t) is added before tx

DSB-TC

Standard AM

Carrier as well as the sidebands are tx

(Advantages)

A very simple envelop detector (demodulator)

Reduces Rx cost

(Disadvantages)

DSB-TC uses more power and more complex Tx Increases Tx cost

The AM waveform with sine wave modulation shown in the time domain: (a) modulating voltage; (b) carrier frequency; (c) resulting AM waveform

Envelope of AM waveform

$$A_{c} + m(t) = A_{c} + A_{m} \cos w_{m} t$$

= $A_{c} (1 + \beta \cos w_{m} t)$: positive envelope
- $A_{c} (1 + \beta \cos w_{m} t)$: negative envelope

Envelope of AM waveform

Measuring modulation index, m, using: (a) peak values, (b) peak-topeak values

AM waveform from the Envelope

 $y(t) = A_c (1 + (A_m/A_c) \cos w_m t) \cos w_c t$

 $0 \le (A_m/A_c) \le 1$: modulation index

General Signal Equation of DSB-TC

$$y(t) = (1 + (kA_m/A_c)\cos 2\pi f_m t) (A_c \cos 2\pi f_c t)$$

= $A_c \cos 2\pi f_c t + (kA_m/2)\cos 2\pi (f_c + f_m) t$
+ $(kA_m/2)\cos 2\pi (f_c - f_m) t$

 kA_m/A_c : modulation index

k is a function of the characteristic of the modulator