

## FM

Distortion is more likely to impact the amplitude of tx signal than the frequency The message signal is represented by variation in the

frequency of the carrier

- The amplitude of message signal is recovered from the frequency of the carrier
- The frequency of message signal is recovered from the rate of change in the frequency of the carrier FM radio, Audio portion of TV, Point-to-point radio systems

FM



FIGURE 4-1

The FM and PM waveforms for sine-wave modulation: (a) carrier wave; (b) modulation wave; (c) FM wave; (d) PM wave. (*Note:* The derivative of the modulating sine wave is the cosine wave shown by the dotted lines. The PM wave appears to be frequency modulated by the cosine wave.)

#### FM

$$c(t) = A_c \cos w_c t$$
  

$$m(t) = A_m \cos w_m t$$
  

$$y(t) = A_c \cos \theta(t)$$

 $d\theta(t)/dt = 2\pi f_c + km(t)$ : instantaneous frequency k: modulation sensitivity How much instant frequency varies per unit of the input message signal

Angle of y(t): 
$$\theta(t) = \int [w_c + km(t)]dt$$
  
=  $w_c t + \int kA_m \cos w_m t dt$   
=  $w_c t + (kA_m/w_m) \sin w_m t$ 

### FM

$$y(t) = A_c \cos \theta(t)$$
  
=  $A_c \cos [w_c t + (kA_m/w_m) \sin w_m t]$ 

Modulation index:  $\beta = kA_m/w_m = kA_m/2\pi f_m = \Delta f/f_m$ 

k: radian frequency/volt  $\Delta f$ : maximum frequency deviation of the carrier by the amplitude of message

#### FM

Example  $y(t) = A_c \cos [w_c t + \beta \sin w_m t]$ Let  $k = 2\pi (10 \text{K/sec})/v$ ,  $f_c = 10 \text{MHz}$ ,  $A_c = 10v$ ,  $f_m = 4KHz, A_m = 2v$ Then  $\beta = \Delta f/f_m = 20K/4K = 5$  $y(t) = 10 \cos [2\pi (10M)t + 5 \sin 2\pi (4K)t]$ Frequency range of the carrier:  $[f_c - \Delta f, f_c + \Delta f] = [10M - 20K, 10M + 20K]$ = [9.98M, 10.02M]

# **Frequency analysis of FM wave**

An FM signal with a carrier frequency  $w_c$  and a message frequency  $w_m$  contains an infinite number of spectral components at  $w_c \pm nw_m$ The amplitude of each sideband is determined by the

**Bessel** function



# **Frequency analysis of FM wave**

#### TABLE 4-1

Bessel functions of the first kind

| n or order of sidebands  |                                        |       |       |       |       |       |       |       |       |       |          |          |          |                 |          |          |          |
|--------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|-----------------|----------|----------|----------|
| Modulation Index $(m_f)$ | Carrier<br>Frequency<br>J <sub>0</sub> | $J_1$ | $J_2$ | $J_3$ | J4    | $J_5$ | $J_6$ | $J_7$ | $J_8$ | J9    | $J_{10}$ | $J_{11}$ | $J_{12}$ | J <sub>13</sub> | $J_{14}$ | $J_{15}$ | $J_{16}$ |
| 0.00                     | 1.00                                   |       |       |       |       |       |       |       |       |       |          |          |          |                 |          |          |          |
| 0.25                     | 0.98                                   | 0.12  |       |       |       |       |       |       |       |       |          |          |          |                 |          |          |          |
| 0.5                      | 0.94                                   | 0.24  | 0.03  |       |       |       |       |       |       |       |          |          |          |                 |          | -        |          |
| 1.0                      | 0.77                                   | 0.44  | 0.11  | 0.02  |       |       |       |       |       |       |          |          |          |                 |          |          |          |
| 1.5                      | 0.51                                   | 0.56  | 0.23  | 0.06  | 0.01  |       |       |       |       |       |          |          |          |                 |          |          |          |
| 2.0                      | 0.22                                   | 0.58  | 0.35  | 0.13  | 0.03  |       |       |       |       |       |          |          |          |                 |          |          |          |
| 2.5                      | -0.05                                  | 0.50  | 0.45  | 0.22  | 0.07  | 0.02  |       |       |       |       |          |          |          |                 |          |          |          |
| 3.0                      | -0.26                                  | 0.34  | 0.49  | 0.31  | 0.13  | 0.04  | 0.01  |       |       |       |          |          |          |                 |          |          |          |
| 4.0                      | -0.40                                  | -0.07 | 0.36  | 0.43  | 0.28  | 0.13  | 0.05  | 0.02  |       |       |          |          |          |                 |          |          |          |
| 5.0                      | -0.18                                  | -0.33 | 0.05  | 0.36  | 0.39  | 0.26  | 0.13  | 0.05  | 0.02  |       |          |          |          |                 |          |          |          |
| 6.0                      | 0.15                                   | -0.28 | -0.24 | 0.11  | 0.36  | 0.36  | 0.25  | 0.13  | 0.06  | 0.02  |          |          |          |                 |          |          |          |
| 7.0                      | 0.30                                   | 0.00  | -0.30 | -0.17 | 0.16  | 0.35  | 0.34  | 0.23  | 0.13  | 0.06  | 0.02     |          |          |                 |          |          |          |
| 8.0                      | 0.17                                   | 0.23  | -0.11 | -0.29 | -0.10 | 0.19  | 0.34  | 0.32  | 0.22  | 0.13  | 0.06     | 0.03     |          |                 |          |          |          |
| 9.0                      | -0.09                                  | 0.24  | 0.14  | -0.18 | -0.27 | -0.06 | 0.20  | 0.33  | 0.30  | 0.21  | 0.12     | 0.06     | 0.03     | 0.01            |          |          |          |
| 10.0                     | -0.25                                  | 0.04  | 0.25  | 0.06  | -0.22 | -0.23 | -0.01 | 0.22  | 0.31  | 0.29  | 0.20     | 0.12     | 0.06     | 0.03            | 0.01     |          |          |
| 12.0                     | 0.05                                   | -0.22 | -0.08 | 0.20  | 0.18  | -0.07 | -0.24 | -0.17 | 0.05  | 0.23  | 0.30     | 0.27     | 0.20     | 0.12            | 0.07     | 0.03     | 0.01     |
| 15.0                     | -0.01                                  | 0.21  | 0.04  | -0.19 | -0.12 | 0.13  | 0.21  | 0.03  | -0.17 | -0.22 | -0.09    | 0.10     | 0.24     | 0.28            | 0.25     | 0.18     | 0.12     |

Source: E. Cambi, Bessel Functions, Dover Publications, Inc., New York, N.Y., 1948. Courtesy of the publisher.

## **BW requirements for FM**

# The BW of FM depends on the number of significant sidebands

Carson's Rule:  $BW_{FM} = 2 (\beta+1) BW_{BB}$ = 2 (\beta+1) BW\_{BB} = 2 (\Delta+1) BW\_{BB}



# **Broadcast FM**

FM broadcast band: 88 - 108 MHz 100 channels with 200kHz bandwidth Maximum frequency deviation  $\Delta f = 75$ kHz Message frequencies: 50Hz - 15kHz FM bandwidth requirement  $BW_{FM} = 2 (\beta+1) BW_{BB}$  $= 2 (\Delta f + f_m)$ = 180 kHz

A 10kHz guard band above and below to prevent adjacent channel interference