

Figure 1-7.—Effect of frequency on the critical angle.

Basic Propagation Mechanism

Wave length and frequency

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \, m / \sec}{f}$$

c: speed of light

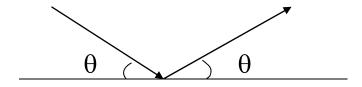
f : frequency

λ	f	Example	
1km	300kHz	AM = 1000kHz	$\lambda_{AM} = 300m$
1m	300MHz	FM = 100MHz	$\lambda_{FM}=3m$
		Cellular = 900MHz	λ_{cell} =30cm
		PCS = 2GHz	$\lambda_{PCS}=12cm$
1mm	300GHz	Satellite – 30GHz	λ_{Sat} –10mm

Radio Wave Interaction

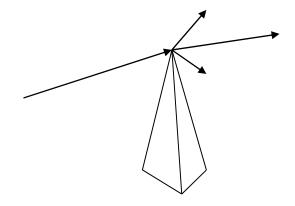
(General principle)

Radio wave only interacts with objects it can see
It can only see objects that are large relatively to its
wave length


 λ_{AM} =300m: does not interact with a building

 λ_{FM} =3m: interacts with a building, but not with a stop sign

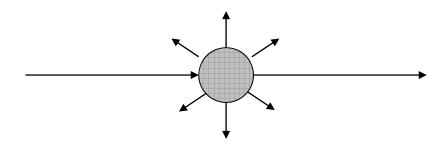
 λ_{Cell} =30cm: interacts with a building, and a stop sign


Reflection: size of object $> \lambda$

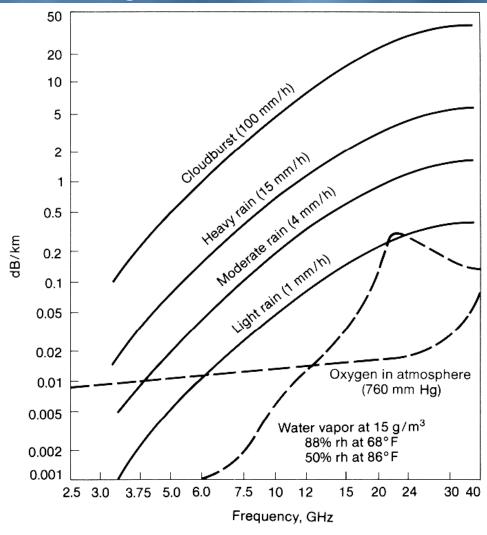
Due to flat and uniform surfaces

Diffraction: size of object $> \lambda$

Due to edges of objects



How electromagnetic waves interact?


Scattering: size of object $< \lambda$

Due to irregular and small objects

i.e., rain drops, leaves of a tree

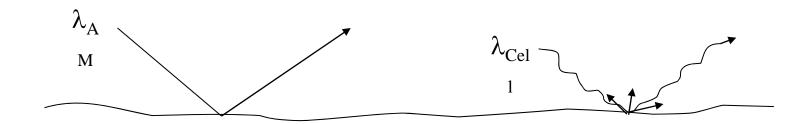
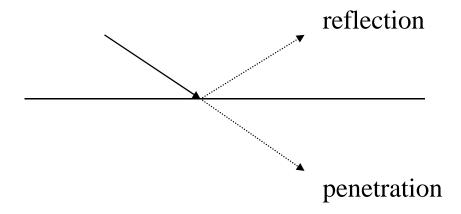

The higher the frequency, the more the attenuation due to scattering

Figure 12.11 Estimated atmospheric absorption. (From Ref. 8, p. 443.)

How electromagnetic waves interact?

Even in small wall, some waves reflect and some other waves scatter


How electromagnetic waves interact?

Penetration

If conductor, no penetration

Current flows on the surface of a conductor

Not perfect conductor, the wave penetrates

Summary

High Frequency

Almost everything looks rough surface in natural environment

Scattering much

Signal does not propagate much unless it has line of sight

Low Frequency < 3GHz, $\lambda \ge 10cm$

Good reflection/Diffraction

Signal fills up entire space (Good news)

Many signal paths, multipath (Bad news)