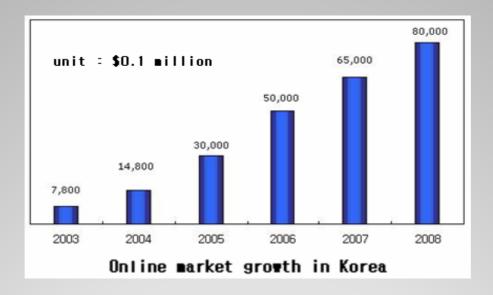
Improving Customer Service Operations at Amazon.com

9조 Jin Goo Ki Sung 2007/11/29 Telecom Service/Policy

- Introduction
- Problem Setting
- Literature Review
- Solution Approach
- Result

Table of Contents

 Interface between customer and company is very important



< on-line >

- Effects on
 - Customer satisfaction on the product
 - I mage of the company

On-line market has developed rapidly

- The Interface of On-line market
 - The features of company's web site
 - Contact Center (Voice, E-mail)

Online market

- For good interface, online company should provide a feedback in certain amount of time
 Need to schedule the human resource
 - in contact center
- The objective of this paper
 - Provide the mathematical programming to allocate human resource in contact center efficiently

$$\begin{split} \min & \ \, \sum_{t=1}^{T} \sum_{(i, j) \in \mathcal{G}} \left(N_{t}^{ij} n_{t}^{ij} + O_{t}^{ij} o_{t}^{ij} \right) + \sum_{t=1}^{T} \sum_{\{(i, j) \in \mathcal{G} \mid i = 1\}} H_{t}^{ij} h_{t}^{ij} \\ & + \sum_{t=1}^{T} \sum_{\{(i, j) \in \mathcal{G} \mid i \neq 1\}} S_{t}^{ij} s_{t}^{ij} + \sum_{t=1}^{T} \sum_{i \in \mathcal{G}} F_{t}^{i} \end{split}$$

• AMAZON.COM amazon.com

American e-commerce company

Revenue (from 1997 to 2006) \$Mil

Amazon.com

Introduction

AMAZON.COM amazon.com

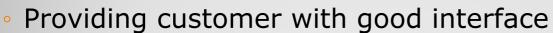
- Their success came from
 - Steady growth(not fast) Revenue (from 1997 to 2006) \$Mil

- Diversification
- CSO (Customer Service Organization)

The Leaders and Best E-Commerce/Transaction Sites		
• B8	nge of e-Gov scores เN.com าลzon	57 to 86 88 87
• Eb	ay 800Flowers.com	80 77

Amazon.com

Introduction

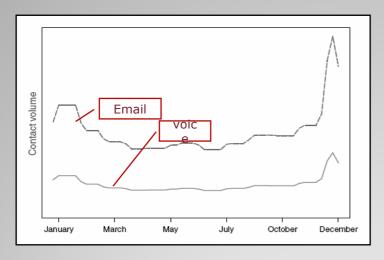

CSO

"We believe that our ability to establish and maintain long-term relationships with customers and to encourage repeat visits and purchases depends on the strength of customer service operations" (Amazon.com 2003, p. 4).

- Provide interface through
 - Website
 - Tracking orders and shipments
 - Reviewing estimated delivery dates
 - Cancelling unshipped items.

- Contact centers (internal, external)
 - If cannot resolve inquiries using the web site
 - E-mail or phone call (24hours)

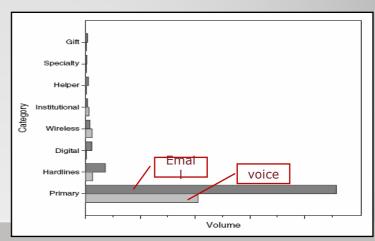
 Size the capacity of contact center to respond to customer in certain amount of time



Human Resource Planning

Problem Setting

Schedule the contact center (internal, external)


Considering

- Seasonality

The weekly volume of contacts

Contacts divided by 8 Category ** 8 Planning Groups

Problem Setting

The volume of contacts by category

Problem Setting

Training

Training of Customer Service Representative (CSR)

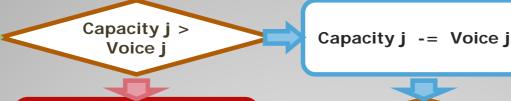
New Representativ e

Primary Training

Be Primary CSR

Additional Training

Be Special CSR


Primary CSR

Training of CSR

Problem Setting

AS-IS (spread sheet based)

Special PG (internal)

Capacity j -= Voice j Primary += Capacity j Capacity j = 0 Capacity j > E-mail j

Capacity j -= E-mail j
Primary += Capacity j

Capacity j = Voice j + E-mail j

Primary PG

Primary Voice -= Cosourcer

Primary Voice > Primary

Primary Voice -= Primary External = Primary Voice

Primary -= Primary Voice

Problem Setting

Three Issues

- 1. how they added CSRs to teams?
 - Differences in contracts with cosources, staffing and service levels
 - Average productivity, wage differ among centers
- 2. Contract terms differ across cosourcers
 - Cost per 'Contact handled' vs 'Fixed charge'
- 3. Lack of consideration between service objectives and staffing cost
 - Ignore the randomness of arrival rate, handling time
 - No lever to allow CSO manager to consider them

- Gans Et al. (2003)
 - Comprehensive summary of the state of call-center research pertaining to capacity management
- Whitt (1999)
 - Determination of capacity in a setting with two customer classes. (one-immediately, the other response within a day)
- Armony and Maglaras (2004)
 - In a call center, customers can chose service class
 1 (call back) or class 2 (wait for expected delay)

Literature Works

Chen and Henderson (2001)

 Ina call center, service is divided into 2 groups. For higher priority use (tail probability), other classes use Markov's inequality

Gans and Zhou (2002)

 Focused on a situation where 2 classes of customers exist (high and low value). Solve a problem to determine staffing level considering outsourcing lower value class.

Literature Works

TO-BE

- Math programming considering three issues
- Develop two stage solution approach
 - Adjustment Procedure
 - Adjust contact forecasts to take into account different source of uncertainty and service level objectives
 - Hourly forecasts of e-mail and voice contact, average CSR handling time and service-level objectives

- Mixed integer program
- Minimum-cost capacity plan for processing the contact forecast

Adjustment

• Step.1 $ho_{v,h}=\lambda_{v,h}/\mu_v$ $ho_{e,h}=\lambda_{e,h}/\mu_e$

Without regard to service level objective

• Step.2 Calculate the $\tilde{
ho}_{v,h}$

With regard to service level objective using Erlang C formula

• Step.3
$$\theta_d = \sum\limits_h \rho_{v,h}$$
 , $\phi_d = \sum\limits_h \rho_{e,h}$, $\tilde{\theta}_d = \sum\limits_h \tilde{\rho}_{v,h}$

• Step.4 If $\theta_d + \phi_d > \tilde{\theta}_d$, $\gamma_d = \theta_d \cdot \mu_v$ Else $\gamma_d = \tilde{\theta}_d \cdot \mu_v$

$$\rightarrow V_t^k = \sum_d \gamma_d$$

Step.5
$$E_t^k = \sum_d \phi_d \cdot \mu_e$$

The collection of adjusted forecasts becomes input to the optimization model

Adjustment

Objective Function

$$\min \sum_{t=1}^{T} \sum_{(i,j) \in \mathcal{G}} (N_t^{ij} n_t^{ij} + O_t^{ij} o_t^{ij}) + \sum_{t=1}^{T} \sum_{\{(i,j) \in \mathcal{G} \mid i=1\}} H_t^{ij} h_t^{ij}$$

$$+ \sum_{t=1}^{T} \sum_{\{(i,j) \in \mathcal{G} \mid i \neq 1\}} S_t^{ij} s_t^{ij} + \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} F_t^{i}$$

$$- \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=2}^{R^i} F_t^{i} y_{k,t}^{i} + \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=1}^{R^i} U_{k,t}^{i} x_{k,t}^{i}$$

$$- \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=2}^{R^i} F_t^{i} y_{k,t}^{i} + \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=1}^{R^i} U_{k,t}^{i} x_{k,t}^{i}$$

$$- \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=2}^{R^i} F_t^{i} y_{k,t}^{i} + \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=1}^{R^i} U_{k,t}^{i} x_{k,t}^{i}$$

$$- \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=2}^{R^i} F_t^{i} y_{k,t}^{i} + \sum_{t=1}^{T} \sum_{i \in \mathcal{Q}} \sum_{k=1}^{R^i} U_{k,t}^{i} x_{k,t}^{i}$$

Optimization Model

Solution Approach

Volume

Constraints

$$\begin{split} \sum_{(i,j)\in\mathcal{B}} v_t^{ij,\,1} + \sum_{i\in\mathcal{C}^v} c_t^i &\geq V_t^1, \quad t=1,\ldots,T, \\ \sum_{(i,j)\in\mathcal{B}} e_t^{ij,\,1} + \sum_{i\in\mathcal{C}^c} c_t^i &\geq E_t^1, \quad t=1,\ldots,T, \\ \sum_{(i,j)\in\mathcal{B}} v_t^{ij,\,k} &\geq V_t^k \\ &\qquad \qquad \forall k\in\mathcal{C},\, k\neq 1,\, t=1,\ldots,T, \\ \sum_{\{(i,j)\in\mathcal{B}\,|\,i=k\}} e_t^{ij,\,k} &\geq E_t^k \\ &\qquad \qquad \forall k\in\mathcal{C},\, k\neq 1,\, t=1,\ldots,T, \end{split}$$

Constraints

$$\begin{split} \mu_{ij,\,i}^{-1} v_t^{ij,\,i} + \sum_k \hat{\mu}_{ij,\,k}^{-1} e_t^{ij,\,k} &\leq (1 - \delta^{ij}) \left(n_t^{ij} + o_t^{ij} \right) \\ \forall (i,\,j) \in \mathcal{G}, \ t = 1, \dots, T, \\ o_t^{ij} &\leq \gamma_t^{ij} n_t^{ij} \quad \forall (i,\,j) \in \mathcal{G}, \ t = 1, \dots, T, \\ W^{ij} w_t^{ij} &\geq n_t^{ij} \quad \forall (i,\,j) \in \mathcal{G}, \ t = 1, \dots, T, \\ w_{t-1}^{1j} (1 - \alpha^{1j}) - d_t^{1j} - \sum_{\{i \in \mathcal{P} \mid i \neq 1\}} s_t^{ij} + h_{t-\tau}^{1j} = w_t^{1j} \\ \forall j \in \mathcal{L}, \ t = 1, \dots, T, \\ w_{t-1}^{ij} (1 - \alpha^{ij}) - d_t^{ij} + s_{t-\hat{\tau}}^{ij} = w_t^{ij} \\ \forall (i,\,j) \in \mathcal{G}, \ i \neq 1, \ t = 1, \dots, T, \end{split}$$

Constraints

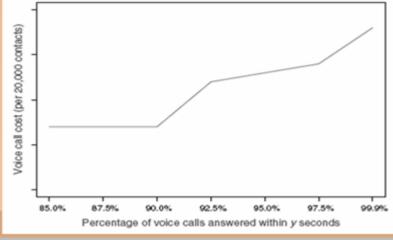
$$\begin{split} v_t^{ij,\,k} &\leq \beta_t^{ij,\,k} V_t^k \\ & \forall (i,j) \in \mathcal{G}, \, \forall \, k \in \mathcal{C}, \, t = 1, \dots, T, \\ e_t^{ij,\,k} &\leq \hat{\beta}_t^{ij,\,k} E_t^k \\ & \forall (i,j) \in \mathcal{G}, \, \forall \, k \in \mathcal{C}, \, t = 1, \dots, T, \\ c_t^i &\leq \xi_t^i V_t^1 \quad \forall \, i \in \mathcal{Q}^v, \, t = 1, \dots, T, \\ c_t^i &\leq \xi_t^i E_t^1 \quad \forall \, i \in \mathcal{Q}^e, \, t = 1, \dots, T, \\ \sum_{i \in \mathcal{Q}^v} c_t^i &\leq \hat{\xi}_t^v V_t^1, \quad t = 1, \dots, T, \\ \sum_{i \in \mathcal{Q}^e} c_t^i &\leq \hat{\xi}_t^e E_t^1, \quad t = 1, \dots, T, \end{split}$$

Constraints

$$\begin{split} x_{k,\,t}^i - B_k^i y_{k,\,t}^i &\leq 0 \\ &\forall \, i \in \mathcal{Q}, \, \, k = 1, \ldots, R^i - 1, \, \, t = 1, \ldots, T, \\ x_{k,\,t}^i - (B_{k-1}^i + 1) y_{k,\,t}^i &\geq 0 \\ &\forall \, i \in \mathcal{Q}, \, \, k = 2, \ldots, R^i, \, \, t = 1, \ldots, T, \\ c_t^i &= \sum_{k=1}^{R^i} x_{k,\,t}^i \quad \forall \, i \in \mathcal{Q}, \, \, t = 1, \ldots, T, \\ \sum_{k=1}^{R^i} y_{k,\,t}^i &= 1 \quad \forall \, i \in \mathcal{Q}, \, \, t = 1, \ldots, T, \end{split}$$

Constraints

$$\begin{split} M(1-z_t^i) &\geq (1+\zeta^i)c_{t-1}^i - c_t^i \\ &\forall i \in \mathcal{Q}, \ t = 1, \dots, T, \\ Mz_t^i &\geq c_t^i - (1+\zeta^i)c_{t-1}^i \quad \forall i \in \mathcal{Q}, \ t = 1, \dots, T, \\ M(1-\hat{z}_t^i) &\geq c_t^i - (1-\zeta^i)c_{t-1}^i \\ &\forall i \in \mathcal{Q}, \ t = 1, \dots, T, \\ M\hat{z}_t^i &\geq (1-\zeta^i)c_{t-1}^i - c_t^i \quad \forall i \in \mathcal{Q}, \ t = 1, \dots, T, \\ M(1-z_t^i) &\geq c_{t+\omega}^i - (1+\zeta^i)c_t^i \\ &\forall i \in \mathcal{Q}, \ t = -\Omega^i + 1, \dots, T, \ \omega = 1, \dots, \Omega^i, \\ -M(1-\hat{z}_t^i) &\leq c_{t+\omega}^i - (1-\zeta^i)c_t^i \\ &\forall i \in \mathcal{Q}, \ t = -\Omega^i + 1, \dots, T, \ \omega = 1, \dots, \Omega^i, \end{split}$$


Experiment

- Planning Horizon = 52 weeks (1year)
- 134,000 constraints, 16,000 variables(1000 integer)
- CPLEX on an HP 9000 superdome server
- Takes less than 5 minutes (spread sheet 1day)

Results

Save Time, enable additional scenario analysis

- Considers 'Three Issues' not considered in AS-IS
- Increases annual operational cost savings

Results

Results

• Reference는 아직 다 정리가 안되어 정리 되는데로 다시 보내드리겠습니다.

Reference