Homework 3

20. Consider an ARQ algorithm running over a $20-\mathrm{km}$ point-to-point fiber link.
(a) Compute the propagation delay for this link, assuming that the speed of light is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in the fiber.
(b) Suggest a suitable timeout value for the ARQ algorithm to use.
(c) Why might it still be possible for the ARQ algorithm to time out and retransmit a frame, given this timeout value?
21. Suppose you are designing a sliding window protocol for a $1-\mathrm{Mbps}$ point-to-point link to the moon, which has a one-way latency of 1.25 seconds. Assuming that each frame carries 1 kB of data, what is the minimum number of bits you need for the sequence number?
22. Suppose you are designing a sliding window protocol for a $1-\mathrm{Mbps}$ point-to-point link to the stationary satellite evolving around the Earth at $3 \times 10^{4} \mathrm{~km}$ altitude. Assuming that each frame carries 1 kB of data, what is the minimum number of bits you need for the sequence number in the following cases? Assume the speed of light is 3×10^{8} meters per second.
(a) $\mathrm{RWS}=1$.
(b) RWS = SWS.
