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IP address lookup is to determine the next hop destination o f an incoming packet in the router. The 

address lookup is a major bottleneck in high performance router due to the increased routing table sizes, 
increased traffic, higher speed links, and the migration to 128 bits IPv6 addresses. IP lookup time is 
dependent on data structure of lookup table and search scheme.  
In this paper, we propose a new approach to build a lookup table that satisfies the memory constraint. The 
design of lookup table is formulated as an optimization problem. The objective is to minimize average depth 
from the root node for lookup. We assume that the frequencies with which prefixes are accessed are known 
and the data structure is level compressed trie with branching factor k at the root and binary at all other nodes. 
Thus, the problem is to determine the branching factor k at the root node such that the average depth is 
minimized. A heuristic procedure is proposed to solve the problem. Experimental results show that the 
lookup table based on the proposed heuristic has better average and the worst-case depth for lookup. 
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1. Introduction 

 
Internet consists of different sub-networks which are interconnected via gateways, routers, switches, and 

various transmission facilities. IP (Internet Protocol) provides the functionality for connecting end systems 
across multiple networks which may use different protocols. Today’s Internet provides a broad range of 
services from E-mail to complex client/sever applications such as the World Wide Web (WWW), Video On 
Demand (VOD) service and e-commerce. Statistics show that the number of hosts on the Internet is tripling 
approximately every two years and traffic of Internet increases exponentially (Lampson, B. et al., 1998)  
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Speeding up the packet forwarding in the Internet backbone requires both high-speed communication 
links and high performance router. While advances in optical technologies such as WDM (Wavelength 
Division Multiplexing) have increased link speeds to beyond tens of gigabits per second, Internet backbone 
routers have been lagging behind. One main reason for this is the relatively complex packet processing 
required at a router. For every incoming packet, the router has to lookup a packet’s next hop destination. As a 
result, the major bottleneck remained in the Internet router is slow software-based IP lookup procedures. 
Especially, because the lookup speed at the router is dependent on the data structure used for the lookup table, 
the design of the table for high speed lookup has received considerable attention in telecommunication 
research. 

When IP was first standardized in 1981, the designers decided that the IP address space should be divided 
into three different address classes- Class A, Class B, and Class C (Comer, D.E., 1995). This is often referred 
to as “classful” addressing because the address space is split into predefined categories. Each class fixes the 
boundary between network part and host part within 32 bits. This simplified the routing system because the 
classes are identified with first 3 bits. But the exponential growth of the Internet raised serious concerns 
about exhaustion of IP address. To solve this address problem, the concept of CIDR (Classless Inter-Domain 
Routing) was developed (Fuller, V. et al., 1993) which eliminates the traditional concepts of classes and 
replaces them with the generalized concept of “network prefix”. Also IPv6 is currently being explored in a 
working group of IETF. IPv6 uses 128 bits instead of 32 bits in the IPv4. The network prefix enables the 
efficient allocation of the IPv4 address space until IPv6 is deployed. 

In the way of CIDR, each IP route is identified by a <route prefix, prefix length> pair, where the prefix 
length is in the range between 0 and 32 bits. For every incoming packet, a search in the router’s lookup table 
must be performed to determine which next hop the packet is destined for (Fuller, V. et al., 1993). With 
CIDR, the search may be decomposed into two steps. First, we need to find the set of routes whose prefixes 
match that of the incoming IP destination address. Then, among the set of routes, we have to select the one 
with the specifically matching prefix. This is the route used to identify the next hop. Due to the facts that 
table entries have variable lengths and that multiple entries may represent the valid routes to the same 
destination, the search may be complicated. This operation is called the “longest prefix matching” (LPM). 
The LPM operation is the most important process of IP lookup because an invalid route cannot give correct 
destination information. In the primary addresses of Class A, Class B, and Class C, we can use exact 
matching prefix because the network parts are only 8, 16, and 24 bits respectively for addressing (Comer, D. 
E., 1995). But, in the CIDR, we cannot use exact matching prefix for lookup procedure because of variable 
prefix lengths. Thus, we cannot use the traditional binary tree data structures which only process exact 
matching procedure.  

We present a general framework for generating optimal lookup table for IP routing with memory 
constraint. For the longest prefix matching we use level compression trie data structure, which is known to 
support the LPM. We formulated the IP lookup problem as an optimization problem, and suggested heuristic 
approach for building the lookup table.  

In Section 2, we examined the existing approaches for IP lookup. In Section 3, a heuristic approach for 



building lookup table is presented. Simulation results based on the proposed approach are discussed in 
Section 4. Finally, a conclusion is given in Section 5.  

 

2. Existing Approaches to IP Lookup 
 

There have been many schemes developed to solve the classless IP lookup problem. Some schemes are 
hardware specific, while others are more suitable for software solutions, and some others take protocol based 
approaches. 

In hardware specific approaches, they use hashing functions for indexes into memory and cash memory. In 
the worst as well as average cases, with proper design of such functions, significant improvements in lookup 
speeds can be obtained. There are approaches using CAM (McAulley, A. et al., 1993), Caching (Gupta, P. et 
al., 1998), and Large Memory Architecture in this area. 

In software-based approaches, they use data structures such as a modified binary tree (it is also called 
binary trie), Patricia tree, and Level Compression Trie for the IP lookup (Cheung, G. et al., 1999).  

In case of using binary tree, each prefix is represented by a node in the tree, usually a leaf, and the path 
from the root to that node reveals the associated bit pattern of the prefix. Each node of the tree has at most 
two children, hence is called binary tree, and it is one case of trie which may have more than two children. In 
this approach, the lookup performance is not so good because the worst case of memory access for lookup is 
32 times which is the longest bit length of IPv4. Patricia tree is a tree where certain sequences of input bits 
may be skipped over before arriving at the next node. Compression is occurred when a long sequence of one 
nodes needs to be traversed before arriving at a subtree of prefixes. We can reduce the lookup times by 
skipping compressed nodes. As a variation of the Patricia tree, level compression trie is introduced for 
efficient lookup operation (Nilsson, S. et al., 1999). 

The level compression is a trie in which each complete subtree of height h is collapsed into a subtree of 

height one with h2  children (Nilsson, S. et al., 1999). For example, starting at node i, if there are exactly 
h2 descendent nodes at level h, then all the intermediate nodes from level 1 to level h –1 can be replaced by 
h2  branches originated directly from node i. With the level compression trie, we only need one comparison 

at the binary tree instead of h comparisons. However, the existing level compression trie is only built in a 
complete tree case; the data structure does not consider memory constraint. In this paper, we suggest  

modified level compression trie which satisfies the memory constraint while minimizing average depth from 
 

Figure 1. LC Trie representation 
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the root node. 
Protocols based approaches are the ways to have extra information sent along with the packet to simplify 

or even totally get rid of IP lookups at routers. Two major proposals along these lines are IP Switching and 
Tag Switching (Rechter, Y. et al., 1997). However both schemes require large network modification to adopt 
their schemes for lookup operation. As an example, ingress router is required to perform a full routing 
decision. 

 

3. Heuristic Approach for Building Lookup Table 
 
Although previous works on the fast IP route lookup proposed elegant designs for their table lookup 

schemes, no approaches attempted to design an optimal strategy except some papers (Cheung, G. et al., 1999, 
Gupta, P. et al. 2000). In this paper a lookup table which considers memory constraint for the branching 
factor, skip value and pointer is considered that minimizes average depth of the branches in the table. The 
depth represents the number of memory access to get the next hop information of each prefix. 

We first present a brief introduction to the data structure used in IP address lookup and representation of 
how prefixes are mapped to its structure. We then present a formulation of the lookup table design problem 
to determine the branching factor at the root node. Finally we propose a heuristic procedure to design an IP 
lookup table which is modified from level compression trie. 

  
Table 1. Binary strings to be stored  

in a trie structure 

      Prefix Next hop 

0 0 0 0 L1 

0 0 0 1 L2 

0 0 1 0 1 L3 

0 1 0 L4 

0 1 1 0 L5 

0 1 1 1 L6 

1 0 0 L7 

1 0 1 0 0 0 L8 

1 0 1 0 0 1 L9 

1 0 1 0 1 L10 

1 0 1 1 0 L11 

1 0 1 1 1  L12 

1 1 0 L13 

1 1 1 0 1 0 0 0  L14 

1 1 1 0 1 0 0 1 L15 



3.1 Representation of Level Compression Trie 
  
Consider an example of binary strings given in Table 1. A string 010 corresponds to the path from the root 

to the node with next hop information, L4. The prefixes in the table can be represented to level compression 
trie shown in Figure 1. Table 2 shows the array representation of the LC trie in Figure 1 in the memory. Each 
entry represents a node.  

Nodes in Table 2 are numbered in breadth-first order starting at the root in Figure 1. Each number k  in 
the branching factor indicates the number of bits used for branching at the corresponding node. A value 

1≥k  indicates that the node has k2 children. The value 0=k  means that the node is a leaf. The skip 
value represents the number of bits that can be skipped during the search operation. When there is a long 
sequence of one child in the trie structure, the memory space as well as the depth for searching the node can 
be reduced by using the skip value. Comparisons for the prefix bits corresponding to the skip value are not  

 
Table 2. Memory structure of LC trie 

Node Branching 

Factor ( k ) 

Skip 
Value 

Pointer of the 
leftmost child 

Corresponding  
Next hop: Prefix 

1 3 0 2  

2 1 0 10  

3 0 2 0 L3 : 0 0 1 0 1 

4 0 0 0 L4 : 0 1 0 

5 1 0 12  

6 0 0 0 L7 : 1 0 0 

7 2 0 14  

8 0 0 0 L13:1 1 0 

9 1 4 18  

10 0 0 0 L1 : 0 0 0 0 

11 0 0 0 L2 : 0 0 0 1 

12 0 0 0 L5 : 0 1 1 0 

13 0 0 0 L6 : 0 1 1 1 

14 1 0 20  

15 0 0 0 L10:1 0 1 0 1  

16 0 0 0 L11:1 0 1 1 0 

17 0 0 0 L12: 1 0 1 1 1 

18 0 0 0 L14: 1 1 1 0 1 0 0 0 

19 0 0 0 L15: 1 1 1 0 1 0 0 1 

20 0 0 0 L 8 : 1 0 1 0 0 0 

21 0 0 0 L 9: 1 0 1 0 0 1 



needed because there is only one path. Memory reduction is occurred by compression of the nodes for the 
skip value. 

The value in the pointer column represents a pointer to the leftmost child node. The pointer value, zero 

represents the corresponding node is a leaf node which has the next hop information. 
As an example, suppose we search for the prefix 11101001. We start at the root node, node 1, represented 

in the first column. Since the branching factor k=3 we extract the first three bits from the search prefix. Note 
that the root node has 23=8 children nodes from 000 to 111. Since the pointer of the leftmost child of the root 
node is 2 (000) we access node 9 (111). At node 9 the value of branching factor is 1, skip value is 4, and the 
pointer value is 18. Because the skip value is 4, we skip the next 4 bits, 0100. Then we access the node 19 
the last bit is 1. At node 19 we finally get the next hop information, L15, since it is a leaf node with the 
branching factor k=0. 
 

3.2 Formulation 
 
Note that today’s routers already maintain per-prefix statistics. Thus our question is “ What is the best trie 

data structure given the frequency of access of prefix with memory constraint? ” Viewing it this way, the 
problem is readily recognized to be one of minimizing the average weighted length of a trie problem whose 
prefixes are weighted by the access probabilities. In other words, the problem is to determine the branching 
factor at each node with memory constraint. However, since the decision of branching factor at each node in 
each level vastly increases the problem complexity, we are interested in the branching factor at the root node. 
The branching at all descendant nodes are assumed binary. In this section, we formulate the problem as a 
minimization of average depth of the prefixes.  

To solve the minimization problem of the average weighted length with memory constraint, we present the 
following basic notation. We assume that there are N prefixes each of which has access frequencies, ip , and 
length of iL  with memory constraint M. Let the branching factor at the root node is given by k, which is a 
decision variable. Then the depth of i - th  prefix, )(kdi = 1+− kLi  when the prefix length is greater than 

branching factor. Note that the first k bits are used for the branching information at the root node, and 
kLi −  bits are for the branching at all descendant nodes. Since the branching at each descendant node is 

binary, the total depth becomes 1+− kLi . Otherwise, )(kdi =1.  

Let MU  be the memory space for storing information such as branching factor, skip value, and leftmost 

children’s pointer at each node. Let  Mk  be the sum of required memory for nodes at the k2 sub-binary 
trees branched from the root node with branching factor k. Then the maximum positive integer k  is 
determined by [ ]}/){(log2 MUMUMT −= , which occurs when all nodes are directly branched from the 

root node. 
 

N : total number of prefix 
k : branching factor of root node 

ip : access frequency to prefix i  



)(kdi : depth of prefix i  

M : memory size which is a constraint 
MU : memory unit required for storing information of one node 

kM : sum of memory size for sub binary trees with branching factor k at the root node 

iL : length of prefix i  

 
Now, the minimization problem of the average weighted length with memory constraint is formulated as 

follows. 
 

Minimize    ∑
=

N

i
ii kdp

1
)(                       (1) 

 
Subject to  

MMMU k
k ≤++ )12(  For Tk ,...,2,1=       (2) 

=)(kdi  1+− kLi    if    0≥− kLi         (3) 
1        if    0<− kLi  

For =i  1,2,…, N  
 

The objective (1) is to determine the branching factor k  at the root node to minimize the sum of 
weighted depths of prefixes. Constraint (2) shows the memory constraint when the root node has a branching 

factor k. Since the root node has k2 children and each node requires 1MU for storing node information, the 
memory requirement for the information at the root node and k2  children becomes )12( +k MU.  Mk is 

for all other nodes at the k2 sub-binary trees. Constraint (3) is related to the depth of each prefix when 
branching factor as explained in this section. 

Here we will briefly discuss the complexity of the above problem. Note that most of prefix lengths iL  
are between 16~24 bits (Nilsson, S. et al., 1999). When we restrict the depth )(kdi  of a lookup table to 

4~12, the branching factor, k becomes 4~20. Now our objective is to determine which prefix or part of prefix 
bits to select among 1,000s or 10,000s prefixes to form the k branches. Clearly, the problem cannot be 
handled with any traditional mathematical programming procedure. We thus present a heuristic procedure to 
solve the weighted minimum depth problem with memory constraint. 

 

3.3 Heuristic Procedure for building lookup table 
 
In this section, we propose a heuristic procedure for building a lookup table based on level compression 

trie. The procedure consists of three steps. The first step is to make an initial solution that transforms prefixes 
to binary tree. In the second step, a modified level compression trie is built. Finally in the third step, the 
modified level compression trie that satisfies the memory constraint is considered. 



In the second step, the procedure repeatedly searches a node that can reduce the required memory by 
collapsing its children nodes. We define this node as a decrement node. Note that the existing method 
(Nilsson, S. et al., 1999) reduces memory by collapsing only a complete binary tree. In other words, 
compression is performed only when a node has a complete binary tree. In the proposed procedure, however, 
compression is processed when there is a decrement node even if it is not a complete binary tree. Thus, the 
proposed procedure reduces the average depth of the lookup table. 

The third step is to build the modified level compression trie that satisfies the memory constraint. In this 
step, the procedure increases branching factors of nodes within memory constraint by taking access 
frequencies into account. A node which has maximum sum of probabilities of their grandsons is chosen as a 
new branch. This operation also has the effect of reducing average depth. The heuristic procedure is 
terminated when there is no node which increases the branching factor within memory constraint. 

 

Proposed Heuristic Procedure  
 

BEGIN 
 

Step 1: Initial solution 
1. Sort prefixes in increasing order 
2. Make an initial solution with binary tree structure 
3. Go to Step 2 
   

Step 2: Building the LC-trie 
1. Compute the memory decrements of each node when its children is compressed  

 IF there is no decrement nodes  
        THEN go to Step 3 

2. Choose the node which has a maximum decrement and compress its children 

IF there exists same maximum decrement 
         THEN choose the node of lower level  

3. Build the new trie 
4. Compute the decrement of memory when each level of new trie is compressed 

IF there is no memory decrement of nodes greater than or equal to zero 
      THEN go to Step 3 

5. Go to Step2-2 
 

Step 3: Building the LC-trie which satisfies the Memory constraint 
1. Check whether LC-trie satisfies the Memory constraint 

IF it does not satisfy the Memory constraint 
THEN stop and return the infeasible message 



2. Choose the node which has maximum sum of probabilities of its grandsons  

   IF the required memory for compression of its children nodes does not satisfy the memory 
constraint 

        THEN return as final solution 
3. Build the new trie 
4. Compute the required memory for compression of its children when each node of new trie is compressed 

IF there is no level which satisfy the memory constraint 
     THEN stop and return as final solution 

5. Go to Step 3-3 

 
END 

     

4. Simulation Results  
 

Statistics (Nilsson, S. et al., 1999) shows that most of prefix lengths are between 16 bits and 24 bits, 
especially the prefixes whose lengths are 24 bits are more than half of total prefixes. Thus we randomly 
generated 50 % of total prefixes for prefixes of 24 bits length, and 30 % for prefixes between 16bits and 23 
bits. Other prefixes are generated with the rest of portion. We also gave access frequencies for each prefixes 
by random generation such that the sum of the access frequencies is equal to one.  

Two experiments are performed to investigate the performance of the proposed heuristic. The first 
experiment is performed without memory constraint. Table 3 shows the simulation result. Ten sets of 
instances are experimented in each case with different number of prefixes. The proposed heuristic is 
compared to one of existing approaches which is built in the complete tree case (Nilsson, S. et al., 1999). The 
required memory in the table represents the number of entries for storing the prefixes. Each number under 
the required memory is the smallest integer that is greater than the averaged memory size. Clearly, the 
proposed heuristic has better performance in all cases with reduced memory. The average and worst case 
depth are dramatically reduced. The result also shows that the average depth becomes smaller as the number 
of prefixes increases. This can be explained by the fact that the level compression is more efficient in a 
lookup table with more densely populated prefixes.  

Another experiment is performed with different memory constraint. For each size of prefixes ten sets of 
instances are generated each with different memory constraint. As shown in Table 4, the heuristic gives lower 
average depth as the memory constraint increases. The depth in the worst case is also reduced with the 
proposed heuristic, which illustrates an efficient level compression trie for IP lookup table. 
 
 
 
 
 



Table 3. Comparison of the Proposed and Existing Procedures without Memory Constraint 

Average Depth Depth in the Worst Case Required Memory 
Number of 

Prefixes 
Proposed 
Heuristic 

Existing 
Algorithm

Proposed 
Heuristic 

Existing 
Algorithm

Proposed 
Heuristic 

Existing 
Algorithm 

100 6.72 10.92 12 15 131 167 

1000 7.03 11.25 11 21 1220 1591 

5000 5.83 9.83 13 17 6290 7993 

10000 5.47 8.82 9 14 12685 15873 

15000 4.42 6.08 8 15 18018 23833 

 
Table 4. Performance of Proposed Heuristic with different Memory Constraints 

5000 Prefixes 10000 Prefixes 15000 Prefixes 
Memory 

Constraint 
Average 
Depth 

Depth in the
Worst Case 

Average 
Depth 

Depth in the
Worst Case 

Average 
Depth 

Depth in the
Worst Case

20000 3.43 7 3.66 7 4.21 8 

30000 2.91 6 3.02 7 3.68 7 

40000 2.58 5 2.76 5 2.88 6 

50000 2.09 4 2.31 4 2.43 5 

60000 1.99 4 2.10 4 2.31 4 

 

5. Conclusion 
  

In this paper, the lookup table design problem is considered to minimize the average depth required to 
obtain the next hop information. A heuristic procedure is proposed to minimize the average depth with 
memory constraint. Experimental results show that the improvement is overwhelming compared to one 
existing algorithm. Lower depth is obtained with less memory compared to the existing procedure. The 
improvement will be much more visible in case of IPv6 which requires much more memory due to increased 
number of address bits. 
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