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Abstract 

Fair bandwidth allocation is an important issue in the multicast network to serve each 

multicast traffic at a fair rate commensurate with the receiver’s capabilities and the capacity 

of the path of the traffic. Lexicographically fair bandwidth layer allocation problem is 

considered and formulated as a nonlinear integer programming problem. A nonincreasing 

convex function of the bandwidth layers of the virtual sessions is employed to maximize the 

bandwidth of each virtual session from the smallest. 

To solve the fairness problem a genetic algorithm (GA) is developed based on the fitness 

function, ranking selection and the shift crossover. Outstanding performance is obtained by 

the proposed GA in various multicast networks. The effectiveness of the GA becomes more 

powerful as the network size increases. 
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1. Introduction 

With the explosive increase of Internet service new traffics such as video conference, 

video on demand, online education, etc are preferred for real time applications. A solution to 

these one-source multiple-receiver traffics that share the limited network resource is 

multicasting. Thus multicasting poses some specific fairness issues in the IP network.  

In multicast network a fair resource allocation among sessions is essential to adapt to the 

different QoS requirement by each application. This is the issue of inter-session fairness, i.e., 

fairness of members across multiple sessions. In addition to the inter-session fairness intra-

session fairness is another issue that has to be solved. In each multicast session receivers are 

allowed to receive information at different rates. This is mainly due to the network 

bandwidth heterogeneity of the receivers that belong to the same multicast group. The 

requirement of different rates even in the same multicast session can be delivered by 

multirate layered transmission [1, 2, 3]. The source signal is encoded and presented to the 

network as a set of bit streams, called layers. The layers are so organized that the quality of 

reception is proportional to the number of layers received. The first layer provides the basic 

information, and every other layer improves the data quality. Therefore, both the inter-

session and intra-session fairness problem has to be solved by the multirate layered 

transmission to satisfy the receivers in multiple multicast groups. 

In the literature several types of fairness are defined that include the max-min fairness [4, 

5, 6], lexicographically optimal [7] and maximal fairness [7, 8, 9]. Sarkar and Tassiulas [7] 

prove that the computation of lexicographically optimal layer allocation is NP-hard. They 

thus provide a polynomial algorithm for maximally fair allocation of discrete layers [7, 8]. 

However, note that the lexicographically optimal allocation is the stronger concept of 
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fairness in the sense that if a layer allocation is lexicographically optimal, then it is 

maximally fair. Thus, we in this paper are interested in the lexicographically optimal fair 

allocation of bandwidth. 

Other fairness objectives include the utility maximization [10, 11]. The utility function of 

a receiver represents the value associated with the bandwidth assigned to the receivers. Rate 

control algorithms [10, 11] are proposed to maximize the sum of utilities over all receivers, 

subject to the link capacity constraints. 

In this paper we consider lexicographically fair allocation of the bandwidth layers among 

multirate multicast sessions. The lexicographic fairness is the best solution to find fair 

allocation in discrete case in view of the nonexistence of max-min fair allocation. The 

fairness problem is formulated as a nonlinear integer programming model. For our fairness 

objective, we introduce a nonincreasing convex function of the bandwidth that maximizes 

the bandwidth of the smallest session first. Subject to this it maximizes the second smallest, 

and so on. The nonlinear model is restricted by the link capacity constraint and the minimum 

bandwidth requirement by each receiver. A genetic algorithm (GA) is proposed to solve the 

nonlinear integer programming problem. Several selection methods are considered for the 

strings that survive generation by generation. Shift crossover and mutation operator are 

employed for the alteration of genes in each string.  Lexicographically fairer solutions are 

obtained by the proposed GA compared to the best known existing algorithm. 

This paper is organized as follows. In Section 2, we briefly discuss the fairness; max-min 

fairness, lexicographically optimal and maximal fairness. A nonlinear integer programming 

model is provided for the lexicographically optimal fair bandwidth allocation problem in 

Section 3. A genetic algorithm is developed to solve the fairness problem in Section 4. 
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Computational result and conclusion are presented in Section 5 and Section 6 respectively. 

 

2. Fairness in Bandwidth Allocation 

When a network has profound heterogeneity, the fairness must include characteristics of 

multi-rate multicast network. Each multicast session transmit data to all of its receivers at 

different rate. One of the frequently used definitions of fairness in multi-rate multicast 

networks is max-min fairness [5, 12]. Informally speaking, a rate allocation is max-min fair, 

if no receiver can be allocated a higher rate without hurting another receiver having equal or 

lower rate. 

As an example, consider the network in Figure 1. It has one source and three destination 

nodes with two links. The bandwidth of each link capacity is 6 and 5 units respectively. The 

max-min fair allocated rate vector in this network is (6, 2.5, 2.5). If we increase the 

bandwidth allocated to the second destination, we decrease the bandwidth allocated to the 

third destination. When continuous allocation of the bandwidth is allowed, the max-min 

fairness always exists and the allocation procedure is studied by Sarkar and Tassiulas [4, 6]. 

However, in layered transmission scheme, bandwidth is allocated in discrete fashion. In this 

case, the max-min fair allocation may not exist.  

A lexicographically fair optimal allocation [7], however, exists even in discrete case. A 

bandwidth allocation vector is lexicographically optimal if its smallest component is the 

largest among the smallest components of all feasible bandwidth allocation vectors. Subject 

to this, it has largest second smallest component, and so on. In the network of Figure 1, if 

the bandwidth is allocated in discrete layer, the max-min fair allocation vector does not exist. 

However, a lexicographically fair optimal allocation exists and given by (6, 3, 2) or (6, 2, 3). 
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Note that max-min fairness and lexicographic optimality are not equivalent. The max-min 

fairness is stronger than lexicographic optimality. If a max-min fair vector exists, it is 

lexicographically optimal. However, a max-min fair bandwidth allocation may not exist in a 

discrete case. In view of the nonexistence of max-min fair bandwidth allocation vector, 

lexicographically optimal bandwidth allocation is the best solution to find fair allocation in 

discrete case. However, it is known that the lexicographically optimal bandwidth allocation 

is NP-hard in case of discrete layer allocation [7]. 

 

3. A Lexicographically Optimal Fair Bandwidth Allocation Model 

Consider a network with N multicast sessions. The traffic of each session is transmitted 

from a source to a set of destination nodes across a predetermined multicast tree. We call a 

source and destination pair of a session a virtual session. 

For a virtual session i, let xi be the bandwidth allocated to the virtual session i and ui be 

the minimum bandwidth requirement, then we have 

xi ≥ ui   i = 1, …, I  

Now, consider a link l in the network where a set of virtual sessions of session j is passing 

through. Let v(j,l) be the set of virtual sessions belonging to session j and traversing link l. 

Note in the multicast tree that the actual bandwidth assigned to the session j is determined 

by the maximum bandwidth among the virtual sessions. Let the link capacity yil be the 

maximum, then 

yjl = 
),(

max
ljvi∈

xi   j = 1, …, J,  l = 1, …, L. 

Note, the total bandwidth assigned to sessions traversing link l cannot exceed the capacity 

of link l. By letting s(l) be the set of sessions passing through link l, and cl be the link 
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capacity constraint, we have 

∑
∈

≤
)(lsj

ljl cy  l = 1, …, L. 

Now, our objective is to allocate the bandwidth for each virtual session such that the 

solution satisfies the lexicographic optimal fairness. Note in the lexicographic optimal 

solution that the minimum component is maximized among all feasible solutions. Subject to 

the maximization, the second minimum is maximized, etc. 

Thus, we consider a nonincreasing convex function 1/xp where p is a large integer. Clearly 

the function gives more credit to a virtual session xi with smaller value, when we minimize 

the sum of 1/xp. Thus, we are interested in the objective function given below. 

Min ∑
=

I

i

p
ix

1
/1  

The above objective function is consistent with the definition of the lexicographic optimal 

fairness in the following sense. For the unit increase of the bandwidth of a virtual session xi 

the improvement of objective function becomes 
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Clearly, better improvement is obtained with the smaller xi. If the minimum virtual 
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session is maximized, then the second minimum is supposed to be maximized when p is 

sufficiently large. Thus, our bandwidth allocation problem is formulated as follows. 

Minimize ∑
=

I

i

p
ix

1

/1  

subject to:  

xi ≥ ui     i = 1, … , I         (1) 

yjl  = i
ljvi

x
),(

max
∈

     j = 1, … , J,  l = 1, …, L    (2) 

l
lsj

jl cy ≤∑
∈ )(

        l = 1, … , L   (3) 

xi ≥ 0 and integers 

As proved by Sarkar and Tassiulas [7], the computation of the lexicographically optimal 

fair allocation problem is NP-hard. The proposed nonlinear integer programming problem 

may not be effectively solved by any conventional optimization techniques. Thus, we 

examine a genetic algorithm as a promising solution procedure for the fair bandwidth 

allocation problem. Note that the genetic algorithm starts with a population of strings and 

generates successive populations of strings by using probabilistic transition rules. Therefore 

the parallel flavor with the population of well-adapted diversity will contribute to the 

lexicographically fair allocation of the bandwidth among multiple multicast sessions.  

 

4. Genetic Algorithm for Lexicographically Fair Bandwidth Allocation 

Genetic algorithms are adaptive procedures that find solutions to problems by an 

evolutionary process based on natural selection. Motivated by the biological adaptation, they 

generate a new set of strings from parent chromosomes via stochastic operation. Strings with 

low fitness values survive and those with high fitness values die off generation to generation. 
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While randomized, genetic algorithms efficiently exploit historical information to speculate 

on new search points with expected improved performance. 

For this propose we examine various selection methods in the literature. Crossover and 

mutation operators are employed for the alteration of real-valued genes within a specific 

range. 

4.1. String and Initial Population 

Each gene of a string represents the bandwidth of a virtual session. Since a solution has to 

satisfy the minimum required bandwidth constraint and the link capacity constraints, initial 

population is generated by feasible strings such that each gene xi of the string satisfies the 

three constraints. 

a string : 1x , 2x , 3x , …, Ix , where ix  is the bandwidth of the i-th virtual session 

4.2. Fitness function 

The objective function employed in the formulation of Section 3 is used to evaluate the 

fitness of each string. Note that our evaluation function is to minimize the sum of 1/xp that is 

consistent with the lexicographic optimal fairness. However, there may be cases when no 

resource can be allocated to a virtual session due to the limited link capacity. For such a case 

the fitness function needs to be modified. For the case when ix = 0, the fitness function can 

be modified to ∑
=









+

I

i

p

ix1 1
1

. 

4.3. Selection method 

We consider four selection schemes commonly used in genetic algorithms [13]. The 

following four methods are considered and compared. 
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1) Remainder stochastic without replacement 

Get expected count by the strings fitness divided by population fitness average, and put 

strings as the integer part of expected count into population. Sort the decimal fraction from 

maximum to minimum, and put strings into the population until the population size is filled. 

2) Ranking selection 

Sort the population from the best to the worst, assign the number of copies that each 

individual should receive according to a non-increasing assignment function. Then select 

two individuals according to that assignment and alternate the worst individual with the new 

individual that is created after crossover. 

3) Tournament selection 

Choose two sets of individuals with two individuals in each set. Select the better in each 

set. Two children are created from crossing over the two better individuals. Finally, 

exchange the worst two individuals in the population with the two new individuals. 

4) Stochastic tournament selection 

Select the mating pool of the next generation by spinning the weighted roulette wheel and 

execute the tournament selection. 

4.4. Crossover 

The crossover that is usually employed in real-coded genetic algorithms is to crossover 

two collocated genes each from different parent. Each pair of genes in the same position of 

two parents is crossed over to generate a new string. In this paper we consider BLX α−  

crossover [14] and suggest the shift crossover operator for the fair bandwidth allocation. 
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1) BLX -α crossover 

It uniformly picks values that lie between two genes that contain the two parents, but may 

extend equally on either side determined by a user specified GA-parameter α . For example, 

BLX-0.5 picks parameter values from points that lie on an interval that extends 2
I  on 

either side of the interval I of between parents P1 and P2.  

2) Shift crossover  

Since the fairness we are interested in has the tendency to increase the bandwidth of the 

relatively smaller virtual sessions first, it is advantageous to shift the crossover range to the 

increased interval between P1′ and P2′ as shown in Figure 3. The shift crossover that is 

applied to relatively small virtual sessions will result in improved performance and better 

survival of the virtual sessions in the selection process. 

4.5. Mutation 

The mutation operator that allows random movement in the search space plays a 

secondary role in the alteration of strings. In this study we employ the mutation as an 

Figure 3. Shift crossoverFigure 3. Shift crossover

Figure 2. BLX-α crossoverFigure 2. BLX-α crossover
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operator that changes the bandwidth of a virtual session of a string. To maximize the effect 

of the mutation, the operator is allowed to move the bandwidth of a virtual session either to 

its maximum range or to its minimum required bandwidth. More specifically, when the 

capacity of each link the virtual session i traverses is fully occupied by other virtual sessions, 

then the bandwidth is reduced to its minimum, i.e., xi = ui. Otherwise, xi is increased to its 

full extent that satisfies the capacity limit of links the virtual session traverses.  

4.6. Repair procedure 

When two strings are crossed over, the resultant string may be infeasible due to the 

increased bandwidth of a virtual session i. The total bandwidth required by all sessions 

traversing a link l may exceed the link capacity constraint. To have a feasible solution, a 

virtual session i′ ≠ i traversing the link l is randomly selected and its bandwidth is reduced 

by one unit. This random selection process is repeated as far as the minimum bandwidth 

requirement of each virtual session is satisfied. Even with the minimum bandwidths of all 

other virtual sessions that traverse the link l, the feasibility of the string may not be satisfied. 

In this case the bandwidth of the virtual session i is adjusted to its maximum that satisfies 

the capacity constraint of link l.  

4.7. Genetic algorithm procedure 

The GA procedure employed in this paper is summarized in Figure 4. The initial 

population that satisfies the three constraints in Section 3 is generated with population size 

100. Then the selection method is applied as in Section 4.3. The crossover in Section 4.4 is 

applied with crossover probability 0.7. Then the repair procedure is performed to recover the 

feasibility of a string as in Section 4.6. Finally, the mutation operator in Section 4.5 is 

applied with probability 0.01. As the termination criterion of the proposed GA, we consider  
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the maximum number of strings generated. When the string counter exceeds 10,000, the 

procedure is terminated. 

 

5. Computational results 

In this section, we discuss the computational results of the GA for the lexicographically 

fair bandwidth allocation. First, the four selection methods as well as the two crossover 

operators are compared in a network with 30 virtual sessions. Secondly, the performance of 

the proposed GA is investigated by comparison with the existing algorithm [7] for various 

problems. The algorithm presented in the previous section is implemented in Java (Jdk 

1.1.3) and run on an PENTIUMⅢ-500 Intel personal computer with 256Mbytes of memory 

under Windows 98. 

To compare the strategies for population selection and crossover methods experiments are 

performed with population size 100 by generating a test problem with 30 virtual sessions as 

in Table 1. 
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Table 1 

Specification of test problem 

Number of 
links 

Number of 
sessions 

Number of virtual 
sessions 

Minimum requirement  
of each virtual session 

17 25 30 0 

 

In table 2 the four selection strategies are compared. The shift crossover is applied with 

crossover probability 0.7. Table 2 shows the fitness of string in each problem. The ranking 

selection demonstrates the best performance followed by the tournament, the stochastic 

tournament and remainder stochastic without replacement. Also the ranking selection is 

easier to implement than other selection procedures. Thus we apply the ranking selection in 

the following experiments. 

 

Table 2 

Comparison of selection strategies 

Problem Remainder Ranking Tournament S-tournament 

1 8.29511 7.41913 7.53073 7.42241 

2 12.86472 11.55222 11.56444 11.56444 

3 10.00875 7.94937 7.94937 8.67359 

4 10.45594 9.60214 9.60214 10.30353 

5 11.07090 10.39201 10.39764 10.39436 

6 11.34844 9.28464 9.29977 9.28464 

7 11.30690 10.70566 10.70801 11.43551 

8 9.57221 8.10972 8.12361 8.10972 

9 9.71074 9.08684 9.08450 9.08450 

10 8.85235 7.69424 7.18797 7.58498 

 

 



 14

Table 3 

Comparison of crossover methods 

Problem BLX-0.0 BLX-0.5 Shift crossover 

1 8.02806 7.61485 7.42947 

2 12.33333 12.07472 11.56444 

3 8.28306 8.00485 7.94458 

4 10.46194 9.78146 10.33992 

5 10.55874 9.93757 10.39201 

6 9.92361 9.51222 9.28464 

7 11.15763 10.87291 10.70064 

8 9.06250 8.38722 8.10972 

9 9.65285 9.30019 9.08684 

10 7.62167 7.11944 7.07636 

 

Table 3 compares the crossover methods. The proposed shift crossover that transforms the 

solution range to the increased gene value performs better than the two blend crossovers. It 

seems mainly due to that by the shift crossover the genes with relatively smaller virtual 

sessions are assigned increased bandwidth and survive generation by generation with good 

performance. 

Based on the preliminary test for the proposed GA we employ the ranking selection and 

the shift crossover to investigate the performance in various other problems. 

Table 4 

Multicast networks 

Number of 
links 

Number of 
sessions 

Number of 
virtual sessions

Minimum requirement of 
 each virtual session 

7 8 10 1 

15 16 20 1 

17 25 30 1 

31 43 50 1 
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Four different sizes of multicast networks are generated as in the Table 4. In each 

multicast network ten problems are tested with different link capacities. Each problem is run 

with the proposed GA and the algorithm by Sarkar and Tassiulas [7]. Since both procedures 

have randomness in the selection of virtual sessions to improve, each problem is run 100 

times and the best solution is compared. 

Note that the algorithm in [7] starts with a feasible bandwidth allocation to each virtual 

session. The initial feasible allocation to a virtual session is determined by the minimum 

requirement or the “fare share” computed by dividing each link capacity with the number of 

sessions. If the bandwidth of a virtual session cannot be increased due to the link capacity 

constraint, then the virtual session is saturated. Otherwise, to improve the fairness the 

procedure continues by randomly choosing a minimum virtual session and increasing the 

bandwidth by one unit. 

Tables 5-8 show the best solution for 10, 20, 30 and 50 virtual sessions respectively. In 

each table the solution vector represents the nondecreasing order of bandwidth layers 

allocated to the virtual sessions. The corresponding fitness value is computed with p = 2. As 

illustrated in the tables the solution by GA gives better or at least equal solution compared to 

the algorithm by [7]. As an instance compare the solution vectors of the problem number 10 

with 20 virtual sessions in Table 6. Clearly, the bandwidth assigned to the last virtual session 

is larger in the solution by Sarkar than by the GA. However, the solution by GA is 

lexicographically fairer than that by Sarkar. The same bandwidth layers are assigned to the 

first five smallest virtual sessions in the two procedures. But the bandwidth allocated to the 

sixth smallest virtual session is larger in the GA than in the Sarkar. As discussed in Section 2 

the lexicographic fairness has the preference to the smallest component. If the smallest 
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component is the same, then the second smallest is compared and the one with the larger 

bandwidth wins.  

From Tables 5-8 notice that the proposed GA performs better in problems with large 

complex networks. Better solutions are obtained by the proposed GA in five problems out of 

ten in a network with 10 virtual sessions. The proposed GA provides lexicographically fairer 

solutions in problems 2, 3, 4, 5 and 9 of Table 5. In problems with 20 virtual sessions better 

performance is obtained by the GA in six problems: problems 3, 4, 5, 7, 8 and 10. The 

difference in solution quality by the two procedures becomes clear in problems with 30 and 

50 virtual sessions. The proposed GA exceeds the existing algorithm in all ten problems 

with 30 and 50 virtual sessions. 

Figure 5 shows the number of success experiments out of 100 trials to have the best 

solution. In the case of 50 virtual sessions, the best solution obtained by the GA is never 

searched even with the 100 runs of the existing algorithm in all problems. Clearly, the 

success ratio by the GA is higher than the algorithm by [7] in most problems. The ratio, 

however, is reduced as the multicast network becomes complex. 
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Table 5.  Bandwidth allocation for 10 virtual sessions 

 

 

Problem Procedure Solution vector Fitness value 

GA ( 6,6,6,6,6,7,7,7,8,8 ) 0.2314
1 

Sarkar ( 6,6,6,6,6,7,7,7,8,8 ) 0.2314

GA ( 5,5,6,6,7,7,7,8,8,10 ) 0.2380
2 

Sarkar ( 5,5,6,6,6,7,7,7,8,10 ) 0.2502

GA ( 6,6,7,7,8,8,8,8,8,9 ) 0.1868
3 

Sarkar ( 6,6,7,7,7,8,8,8,8,9 ) 0.1916

GA ( 6,7,7,7,7,7,7,8,8,11 ) 0.1897
4 

Sarkar ( 6,7,7,7,7,7,7,7,8,11 ) 0.1945

GA ( 5,5,6,6,6,6,7,8,8,9 ) 0.2551
5 

Sarkar ( 5,5,6,6,6,6,7,8,8,8 ) 0.2584

GA ( 6,7,7,7,8,8,8,8,9,12 ) 0.1708
6 

Sarkar ( 6,7,7,7,8,8,8,8,9,12 ) 0.1708

GA ( 5,5,5,5,5,6,6,7,9,9 ) 0.3007
7 

Sarkar ( 5,5,5,5,5,6,6,7,9,9 ) 0.3007

GA ( 5,5,6,7,7,7,7,7,8,8 ) 0.2411
8 

Sarkar ( 5,5,6,7,7,7,7,7,8,8 ) 0.2411

GA ( 5,6,8,8,9,9,9,10,10,11 ) 0.1643
9 

Sarkar ( 5,6,8,8,9,9,9,9,9,10 ) 0.1708

GA ( 5,5,6,6,7,7,8,8,9,9 ) 0.2323
10 

Sarkar ( 5,5,6,6,7,7,8,8,9,9 ) 0.2323
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Table 6.  Bandwidth allocation for 20 virtual sessions 

 Problem Procedure Solution vector Fitness value

GA ( 4,4,4,6,6,6,6,6,6,6,6,6,6,7,7,8,9,11,12,12 ) 0.5562
1 

Sarkar ( 4,4,4,6,6,6,6,6,6,6,6,6,6,7,7,8,9,11,12,12 ) 0.5562

GA ( 3,3,4,5,5,5,5,6,6,6,6,6,7,7,7,9,10,13,16,16 ) 0.6809
2 

Sarkar ( 3,3,4,5,5,5,5,6,6,6,6,6,7,7,7,9,10,13,16,16 ) 0.6809

GA ( 5,5,5,5,6,6,6,6,6,6,6,7,7,7,8,9,9,9,9,10 ) 0.4907
3 

Sarkar ( 5,5,5,5,6,6,6,6,6,6,6,6,7,7,8,9,9,9,9,10 ) 0.4980

GA ( 4,4,5,5,5,5,6,6,6,6,6,6,6,7,8,10,11,11,12,13 ) 0.5549
4 

Sarkar ( 4,4,5,5,5,5,5,6,6,6,6,6,6,7,9,11,11,11,12,13 ) 0.5621

GA ( 3,3,4,5,5,5,6,6,6,7,7,8,8,8,9,9,10,10,11,12 ) 0.6356
5 

Sarkar ( 3,3,4,5,5,5,6,6,6,7,7,8,8,8,9,9,10,10,10,12 ) 0.6374

GA ( 5,5,5,5,6,6,6,6,7,7,7,7,7,8,8,8,9,10,11,11 ) 0.4589
6 

Sarkar ( 5,5,5,5,6,6,6,6,7,7,7,7,7,8,8,8,9,10,11,11 ) 0.4589

GA ( 5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,9,12 ) 0.4787
7 

Sarkar ( 5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,9,9,9,12 ) 0.4835

GA ( 5,5,5,5,5,5,6,6,7,7,7,8,8,8,8,9,10,10,10,14 ) 0.4667
8 

Sarkar ( 5,5,5,5,5,5,6,6,7,7,7,8,8,8,8,9,9,10,10,14 ) 0.4691

GA ( 5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,10,13,14 ) 0.5176
9 

Sarkar ( 5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,10,13,14 ) 0.5176

GA ( 5,5,5,5,5,6,6,6,6,6,6,7,8,8,9,9,9,10,13,13 ) 0.4772
10 

Sarkar ( 5,5,5,5,5,5,5,6,6,6,6,7,8,8,9,9,9,10,13,14 ) 0.5008
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Table 7.  Bandwidth allocation for 30 virtual sessions 

 Problem Procedure Solution vector Fitness value

GA ( 3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,8,12,12,16 ) 1.4926
1 

Sarkar ( 3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,12,12,16 ) 1.5791

GA ( 2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,7,7,7,8,9,10,11 ) 2.0194
2 

Sarkar ( 2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,7,7,7,8,9,10,11 ) 2.2972

GA ( 3,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,9,9,9,9,11,13 ) 1.2171
3 

Sarkar ( 3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,9,9,9,9,11,13 ) 1.2519

GA ( 3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,8,11,12,12,13 ) 1.4368
4 

Sarkar ( 3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,8,11,12,12,14 ) 1.5209

GA ( 2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,7,8,9,10,11,15 ) 1.9744
5 

Sarkar ( 2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,8,9,9,11,14 ) 2.0935

GA ( 2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,8,8,8,8,9,9,13,13,13,13 ) 2.0678
6 

Sarkar ( 2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,8,8,8,8,9,10,13,13,13,13 ) 2.0777

GA ( 2,3,3,3,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,8,8,8,11,14,15 ) 1.5477
7 

Sarkar ( 2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,8,8,8,11,14,15 ) 1.5816

GA ( 2,3,3,3,3,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,8,8,8,9,9,9,10,11,12 ) 1.5681
8 

Sarkar ( 2,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6,6,6,7,7,7,8,8,8,8,9,9,11,11,12 ) 1.5922

GA ( 2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,7,7,7,9,14,16 ) 2.0326
9 

Sarkar ( 2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,9,14,16 ) 2.0690

GA ( 2,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,7,7,7,8,9,12,12 ) 1.8920
10 

Sarkar ( 2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,7,7,7,9,10,12,12 ) 1.9313
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Table 8.  Bandwidth allocation for 50 virtual sessions 

 Problem Procedure Solution vector Fitness value

GA ( 3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5, 
5,5,5,5,6,6,6,6,6,6,6,6,6,7,8,9,9,11,11,11,11,13 ) 2.6333

1 
Sarkar ( 3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5, 

5,5,5,5,5,6,6,6,6,6,6,6,7,7,8,9,9,10,10,11,12,13 ) 2.6853

GA ( 2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5, 
5,5,5,5,5,5,5,5,6,6,7,7,7,7,8,8,8,9,11,11,11,12 ) 2.9754

2 
Sarkar ( 2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5, 

5,5,5,5,5,5,5,5,5,6,7,7,7,7,8,8,8,10,11,11,11,12 ) 2.9852

GA ( 3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5, 
5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,9,9,9,10,11,15 ) 2.4258

3 
Sarkar ( 3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5, 

5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10,15 ) 2.4275

GA ( 2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, 
5,5,5,6,7,7,7,7,7,8,8,8,8,8,9,10,11,11,12,13,13,14 ) 2.6082

4 
Sarkar ( 2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, 

5,5,5,6,7,7,7,7,7,7,8,8,8,8,9,10,10,10,12,12,13,14 ) 2.6175

GA ( 2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5, 
5,5,5,5,5,5,6,6,6,6,7,7,7,8,9,9,9,9,9,11,12,13 ) 3.2939

5 
Sarkar ( 2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5, 

5,5,5,5,5,5,6,6,6,6,7,7,7,8,8,9,9,9,10,12,12,12 ) 3.2945

GA ( 2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6, 
6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,9,9,10,11,12,13,15 ) 2.6119

6 
Sarkar ( 2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6, 

6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,10,11,12,13,14 ) 2.6200

GA ( 3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5, 
5,5,6,6,6,6,6,6,7,7,8,8,8,9,9,10,10,10,10,11,11,12 ) 2.3850

7 
Sarkar ( 3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5, 

5,6,6,6,6,6,6,6,7,7,8,8,8,9,9,10,10,10,11,11,11,12 ) 2.3972

GA ( 3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5, 
5,5,5,6,6,6,6,7,7,7,8,8,8,8,9,9,10,11,11,12,13,13 ) 2.3612

8 
Sarkar ( 3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5, 

5,5,5,6,6,6,6,7,7,7,7,8,8,9,9,9,10,10,11,12,12,13 ) 2.3655

GA ( 3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5, 
5,5,6,6,6,6,6,6,6,6,6,6,7,8,8,9,10,10,11,11,14,15 ) 2.4754

9 
Sarkar ( 3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5, 

5,6,6,6,6,6,6,6,6,6,7,7,7,8,8,9,10,10,11,12,14,15 ) 2.5218

GA ( 3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6, 
6,6,6,6,7,7,7,8,8,8,8,8,9,10,10,10,10,11,11,12,14,14 ) 2.1843

10 
Sarkar ( 3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6, 

6,6,6,7,7,7,7,8,8,8,8,8,10,10,10,10,11,11,11,12,14,14 ) 2.3186
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Figure 5. The number of the best solutions searched 

 

6. Conclusion 

A lexicographically fair discrete bandwidth allocation problem in multicast networks is 

examined. The fairness problem is formulated as a nonlinear integer programming problem 

which provides a lexicographically fair bandwidth allocation subject to the minimum 

bandwidth requirement by each virtual session, the actual bandwidth allocated to each 

session at each link and the link capacity constraint. As the objective function a 

nonincreasing convex function of the bandwidth is considered in which the sum of each 

component is minimized by first maximizing the smallest virtual session, then the second 

smallest, etc. 

A genetic algorithm is developed with the fitness value based on the objective function of 
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the nonlinear programming model. The ranking selection and the shift crossover are 

employed in the procedure. The proposed shift crossover transforms solution range of each 

gene to an increased value. Thus the shift crossover has the tendency to improve the virtual 

sessions with relatively small bandwidth generation by generation. 

Computational experiments are performed in a multicast network with 10, 20, 30 and 50 

virtual sessions. The proposed GA demonstrates outstanding performance in all problems 

compared to the best known existing algorithm [7]. The GA provides much better solutions 

and the effectiveness becomes more powerful as the network size increases. What is more 

noticeable is that even with 100 trials the existing algorithm never searches the best 

solutions found by the proposed GA in all ten problems in the network with 50 virtual 

sessions. 
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