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Abstract 
 

In the survivability and simplicity aspect, SONET Self-healing Ring(SHR) is one of the 
most important schemes for the high-speed telecommunication networks.  Since the ring 
capacity requirement is defined by the largest STS-1 cross-section in the ring, load balancing is 
the key issue in the design of SONET SHR.  Recently, most of the research on load balancing 
problem have been concentrated on the SONET single-ring case.  However, in certain 
applications, multiple-ring configuration is necessary because of the geographical limitations or 
the need for extra bandwidth.  

In this paper, the load balancing problem for SONET dual-ring is considered by assuming 
symmetric inter-ring demands.  We present a linear programming based formulation of the 
problem.  Initial solution and improvement procedures are presented, which solves the routing 
and interconnection between the two rings for each demand.  Computational experiments are 
performed on various size of networks with randomly generated demand sets.  Results show 
that the proposed algorithm is excellent in both the solution quality and the computational time 
requirement.  The average error bound of the solutions obtained is 0.26% of the optimum. 

 

 

1.  Introduction 
 
As the link capacity of modern telecommunication networks increases with the 

introduction of optical fibers, the impact of cable cuts or central office failures is getting more 
significant.  Survivability thus has become the key issue in planning networks, especially for 
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data transmissions.  Among many network structural alternatives, Self-Healing Ring (SHR) 
provides high restoration capability for a single cable cut or equipment failure.  A SHR is a 
ring network that provides redundant bandwidth in which disrupted services can be 
automatically restored from network failures.  In the past, however, the ring architecture was 
restricted from applications because metallic, low-capacity systems made the ring uneconomical 
and difficult to adapt to the rapidly growing traffics.  Even with optical fiber, the ring has been 
used only in LANs not in interoffice networks, due to its low speed and complex control scheme.  
However, standardized SONET (Synchronous Optical Network) technology and associated 
flexible high-speed add-drop multiplexing technology have made SHR architecture practical [8]. 
SONET which is the standard for optical transmissions has played an important role for 
increased survivability and fast restoration in modern optical telecommunication networks. 

Among the many challenging problems in network planning that SONET ring gives rise to, 
the most immediate is that of determining a cost effective, survivable network design using 
SONET ring components.  Since the cost of a SONET ring is dependent on its capacity, to find 
the routing for all demands in the ring is an important task to accommodate the traffic with as 
small capacity as possible [1].  Previous works [1], [3], [4], [5], [6], and [7] have focused on 
the load balancing in single ring either with or without demand splitting.  However, two or 
more rings may be necessary to interconnect geographically separated networks with proper 
link capacities. In such a case, the link capacity limit may exclude the single ring application. 
Smith and Yackle [2], as an example, examined a 16-node network with two different traffic 
demands. The experimental results show that three and four-ring configurations are the least 
cost alternatives for centralized and mesh demands, respectively. 

In this paper, balancing loads in SONET dual-ring is considered.  In the dual-ring, to 
decide the routes of the inter-ring demands is the core of the load balancing problem.  For each 
demand it is to decide the routing direction in each ring and the access node between the two 
rings.  Two objectives can be considered: to minimize the maximum load in the dual-ring, and 
to minimize the weighted sum of maximum loads in the two rings. In this paper we consider the 
weighted sum of maximum loads which takes into account the numbers of nodes in the two 
rings.  Note that the latter objective accommodates traffic demands with reduced ring facilities. 

 

2.  Formulation of the problem 
 
Although  there are a number of design alternatives for multiple ring networks, we in this 

paper consider dual-ring network with two access nodes.  We also assume symmetric inter-ring 
demands through the paper.  Figure 1 shows an example of the dual-ring networks.  In the  
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Figure 1:  An Example of  Dual-Ring Networks 

 
figure each node is equipped with ADM (Add-Drop Multiplexer) facility which is a 
multiplexing device used to add and drop local channels and to pass through transit channels.  
In general, the number of ADM nodes are proportional to the amount of traffic in each ring. 

In Figure 1, node 1 and node 12 are located in the same node called Access-1, and node 5 
and node 6 are located in Access-2.  We assume that two nodes in an access node are 
connected via optical links, which is one of the three different nodal configurations presented in 
[8]. 

To model the Load Balancing problem in Dual-ring (LBDR) the following node and arc 
sets need to be considered. 
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Let R1=(N1,A1) and R2=(N2,A2) be two rings called Ring-1 and Ring-2 respectively.  Two 

rings are interconnected by an arc set AI.  Let (1,n1+n2) be Access-1 and (n1,n1+1) be Access-2.  
Then the dual-ring is defined by R=(N1N2, A1A2AI). 

In LBDR we need to decide the route of each inter-ring demand.  In other words, we have 
to decide whether a particular demand is routed in clockwise or counter-clockwise direction in 
each ring and which access link to use for the interconnection.  Therefore, the complete 
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evaluation would imply solving routing problems with 23D variables, where D represents the 
number of demands.  Now, we introduce the following variables to formulate the load 
balancing problem. 
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      if demand  is routed clockwise in Ring - 1,
      otherwise,

      if demand  is routed clockwise in Ring - 2,
      otherwise,

      if demand  is routed via Access - 1,
      if demand  is routed via Access - 2.

 

 
The load balancing in a single ring [3,4] is to minimize the maximum load which occurs in 

an arc of the ring.  We call this maximum load as maximum arc load.  The same objective 
may be employed in the dual-ring case.  However, in a dual-ring network, to minimize the 
maximum arc load is not an appropriate measure for the objective function.  This is mainly 
because of the different number of nodes in the two rings.  In general, as the number of nodes 
in a ring increases, the maximum arc load also increases.  More specifically, the increase of 
one unit load in a ring calls for the capacity increase of all ADM nodes in the ring.  Thus, to 
obtain a balanced load with appropriate ADM node capacity in each ring we are interested in 
minimizing the weighted average of the loads in the two rings.  The number of nodes in each 
ring is used for the weight.  Based on the above discussion we now formulate the LBDR as 
follows: 
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Readers who are interested in the NP-Completeness of the above problem are 
recommended to refer to Cosares and Saniee [1], who proved the NP-completeness of the load 
balancing problem in single ring. In the formulation ik and jk respectively represent the origin 
and destination of demand k.  Constraints set (1) and (2) respectively assure that z1 and z2 are at 

least as large as the maximum of the arc loads in the corresponding ring.  Constraints (3) and 
(4) are concerned with the capacity of the Access-1 and Access-2, respectively.  Note that (3) 
and (4) are nonlinear.  However, the first nonlinear term xkwk of (3) can be converted into a 
variable uk with the addition of the following linear constraints: 
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The above transform is justified due to the zero and one integer valued variables of xk and 

wk.  Similarly, (1-xk)(1-wk), ykwk, and (1-yk)(1-wk)  can respectively be transformed into 
linear terms vk, sk, and tk with corresponding linear constraints. 

 

3.  The Algorithm 
 
In this section we first present the initial routing algorithm with an illustrative example.  

Improvement algorithm is then provided which iteratively improves the solution by rerouting 
demands. 

3.1.  Getting An Initial Solution 
Given an inter-ring demand (ik,jk) such that 1<ik<n1 and n1+1<jk<n1+n2, the path can be 

divided into two intra-ring paths (ik,a) and (a',jk).  Node a and a' are a pair of nodes in either 

Access-1 or Access-2. 
To determine the values of the decision variables xk, yk, and wk is equivalent to determine a 

path for a demand k.  Any path from a node in Ring-1 to a node in Ring-2 has three 
characteristics: 

 A path traverses either node 1 or node n1. 
 A path traverses either node n1+1 or node n1+n2. 
 If the link (1,n1) is contained in a path, it can be replaced with the link (n1+1,n1+n2), 

and vice versa.   
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The third characteristic is clear from that nodes 1 and n1+n2 are in one access node and 
nodes n1 and n1+1 in another access node.  From the above it is clear that the maximum load in 
Ring-1 can be reduced by taking link (n1+1,n1+n2) instead of link (1,n1).  Replacing link (1,n1) 
with link (n1+1,n1+n2) may decrease the maximum load of Ring-1 and increase that of Ring-2.  

Thus, to decide the access node the algorithm compares the maximum arc load in Ring-1 and 
the load in the link (1,n1).  Let Diff-1 be the difference between the load of link (1,n1) and the 

maximum arc load in Ring-1.  In the same way, Diff-2 can be defined in Ring-2.  Now, since 
Diff-1 and Diff-2 respectively represent the spare capacity of link (1,n1) and link (n1+1,n1+n2) 

the one with more spare capacity will be chosen as a link in the path of demand k under 
consideration.  In the selection, the weighted spare capacity is considered which is computed 
by dividing each spare capacity with the number of nodes in the corresponding ring.   

The initial solution procedure first determines the routing directions xk and yk of each 

demand k such that a particular link is not overloaded with the assignments.  Then it decides 
the access link wk. 

 

Initial Solution Algorithm for LBDR 
Step 1  List the demands in non-increasing order of the amount dk. 

Step 2  For each demand k in the order in the list of Step 1: 
Step 2-1  Let the weight of two paths {ik,ik+1,...,n1} and {ik,ik-1,...,1} be respectively the 

sum of corresponding arc loads. 
Step 2-2  Compare the weights of the two paths and select the one with the smaller 

weight. 
Step 2-3  For Ring-2, repeat steps Step 2-1 and Step 2-2. 
Step 2-4  If selected path is either 

{ik, ik+1, ..., n1} on Ring-1 and {n1+1, n1+2, ..., jk} on Ring-2 or  
{ik, ik-1, ..., 1} on Ring-1 and {n1+n2, n1+n2-1, ..., jk} on Ring-2, 

then go to Step 2-5. 
Otherwise, compute the load at each link and find the maximum arc load in 

each ring.  Compute Diff-1/n1 and Diff-2/n2.  If Diff-1/n1 > Diff-2/n2, then arc 
(n1, 1) is included to the path.  Otherwise, arc (n1+n2, n1+1) is selected. 

Step 2-5  Compute the load of each arc.  Go to Step 2. 
 

We will now demonstrate the initial solution procedure with the following demand patterns 
in the dual-ring given in Figure 1.  The unit of the demand is the number of STS-1s. STS-1 
(Synchronous Transport Signal-Level 1) is the basic building block in SONET signal hierarchy 
the transmission rate of which is 51.84 Mbps. 



 7

Among the five demands, since demand 1 has the biggest amount, it is routed first as  
shown in Figure 2.  It is routed along the path that traverses the smallest number of links.  
Access-2 is selected arbitrarily as an interconnection node. 

 
Table 1:  Demand Patterns 

k (ik,jk) dk 

1 (2,7) 9 
2 (3,8) 7 
3 (3,11) 4 
4 (4,9) 8 
5 (4,10) 2 

 
Figure 3 shows the paths on each ring for demand 4, which has the second biggest amount.  

Since the origin of demand 4 is node 4, the weights of path {4,5} and {4,3,2,1} are compared.  
Path {4,5} with smaller weight is selected in Ring-1.  In the same manner, path {12,11,10,9} is 
selected as a path in Ring-2.  As seen in Figure 3, to complete the path the access link has to be 
decided.  For that purpose the two weighted spare capacities are computed to make a choice  
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Figure 2: Path for Demand 1 
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Table 2: Initial Solution 
k (ik,jk) dk xk wk yk
1 (2,7) 9 0 0 1
2 (3,8) 7 1 1 0
3 (3,11) 4 0 1 0
4 (4,9) 8 1 0 0
5 (4,10) 2 0 1 1

 
between arc (5,1) and (6,12).  Since Diff-1/5 = 0/5 and Diff-2/7 = 9/7, arc (6,12) is selected for 
the route of demand 4.  After all demands are routed, the initial solution is obtained as 
presented in Table 2.  Note that the maximum arc load in Ring-1 is 16 at arc (5,6) and that in 
Ring-2 is 19 at arc (11,12). 

 

3.2.  Improving The Initial Solution 
The initial solution obtained in Section 3.1 can be improved by examining a demand which 

is routed through heavily loaded arcs.  The demand is routed in the direction which is opposite 
to the previous one, if it improves the objective function value.  The access node is determined 
in the same way as in the initial solution procedure.  This process is continued as far as 
rerouting a demand improves the solution. 

 

Improving Algorithm for LBDR 
Step 1  Let S={1,2,...,D} be the candidate set of demands. 
Step 2  For each demand in the set S, determine the sum of the loads of arcs in its path.  
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Select the demand k whose sum is the maximum. 
Step 3  Reroute the demand k selected in Step 2 by the following procedure: 

Step 3-1  Remove the demand k from the network and compute the load of each arc. 
Step 3-2  Determine the maximum arc load in path {ik, ik+1, ..., n1} and that in path {ik, 

ik-1, ..., 1}. 

Step 3-3  Select the path which has the smaller maximum arc load as the path of demand 
k in Ring-1.  The ties are broken by replacing the maximum arc load by the 
second to the maximum, third to the maximum, and so forth. 

Sep 3-4  Repeat Step 3-2 and Step 3-3 for Ring-2. 
Step 3-5  If selected paths are 

{ik, ik+1, ..., n1} in Ring-1 and {n1+1, n1+2, ..., jk} in Ring-2 or  
{ik, ik-1, ..., 1} in Ring-1 and {n1+n2, n1+n2-1, ..., jk} in Ring-2, 

then go to Step 3-6. 
Otherwise, compute the load of each arc and find the maximum load in each 

ring.  Compute Diff-1/n1 and Diff-2/n2.  If Diff-1/n1 > Diff-2/n2, then arc (n1, 1) 
is included to the path.  Otherwise, arc (n1+n2, n1+1) is selected. 

Step 3-6  Compute the load of each arc. 
Step 4  If the objective function value is not decreased, let S=S-{k}.  If the set S is empty, 

stop.  Otherwise go to Step 2. 
 
Table 3 shows the result of the above improving algorithm applied to the initial solution 

obtained in Table 2.  From the result of the initial solution as shown in Figure 4(a), the five 
demands are sorted as 5,1,2,3, and 4 which is the non-increasing order of the sum of arc loads.  
Note that the first two demands, i.e., demands 5 and 1 failed to decrease the objective function 
value, when they are rerouted.  Figure 4(b) shows that the objective function value is decreased  
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Figure 4(a): Initial Solution and Route of Demand 2 
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Figure 4(b): Rerouting Demand 2 

 
Table 3: Improved Solution 

k (ik,jk) dk xk wk yk
1 (2,7) 9 0 0 1
2 (3,8) 7 1 0 1
3 (3,11) 4 0 1 0
4 (4,9) 8 1 0 0
5 (4,10) 2 0 1 0

 

by rerouting demand 2.  Thus, the procedure starts again by sorting all five demands as 5,3,2,4, 
and 1.  Now, the objective function is decreased by rerouting the demand 5.  The same 
procedure is repeated with the sorted demand order 3,2,4,5, and 1.  Since no improvement is 
experienced, the algorithm terminates and the result is shown in Table 3.  The maximum arc 
load in Ring-1 is 15 at arc (1,2) and that in Ring-2 is 16 at arc (6,7). 

 

4.  Computational Results 
 
Computational experiments are performed with various size of networks.  In each case of 

the problem demands are generated such that the amount of each demand is uniformly 
distributed integer over (1,19), which is arbitrarily set solely for comparison purpose.  The 
optimal solutions are obtained using the CPLEX[9].  All experiments are performed at 
486-DX33 IBM PC.  The average of five instances for each scenario is presented in Table 4.  
The number represents the relative amount of the solution found by the algorithm, compared 
with the optimum solution or the lower bound.  Of the 95 instances examined, the proposed 
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algorithm generated optimum solutions in 27 cases.  Except the instances (5,5,10), all solutions 
are within 1% of the optimum.   

The results shows that the initial solution procedure is excellent enough to make the 
improvement procedure unnecessary.  Improvements are performed only in 12 instances out of 
95 experiments. 

 

5.  Conclusion 
 
An efficient heuristic algorithm is presented to solve the load balancing problem on 

SONET dual-rings.  A network which consists of two rings connected via two access nodes is 
considered by assuming symmetric inter-ring demands. The initial solution is obtained by first 
deciding the routing directions xk and yk of each demand k such that a particular link is not 
overloaded with the assignments.  Then it determines the access link wk.  The algorithm 

iteratively improves the initial solution by re-routing the demand that passes through the arc 
with the maximum load.  The performance of the algorithm is experimented with various size 
of randomly generated problems.  Computational results show that the initial solution is as 
excellent as the improved solution, while the latter is even closer to optimal solution.  The 
average error bound of the solution is 0.26% of the optimum. 

 
Table 4:  Computational Results of the Dual-Ring Load Balancing Problem 

Problem 

size 
(n1,n2,D) 

Initial 

Solution 

CPU 

Seconds

Improved

Solution 

CPU 

Seconds 

(5,5,9) 102.90 0.00 103.34 0.03 

(5,10,20) 100.62 0.02 100.62 0.02 

(5,15,30) 100.61 0.05 100.61 0.05 

(5,20,40) 100.19 0.16 100.19 0.27 

(10,10,30) 101.04 0.09 100.90 0.13 

(10,15,40) 100.17 0.16 100.09 0.29 

(10,20,50) 100.29 0.23 100.26 0.48 

(10,25,60) 100.07 0.48 100.03 0.95 

(15,15,50) 100.20 0.33 100.12 0.57 

(15,20,60) 100.16 0.53 100.16 0.90 

(15,25,70) 100.08 0.71 100.06 1.46 
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(15,30,80) 100.19 1.04 100.17 1.96 

(20,20,70) 100.14 0.75 100.14 1.36 

(20,25,80) 100.12 1.05 100.10 1.98 

(20,30,90) 100.06 1.45 100.06 2.69 

(20,35,100) 100.18 1.79 100.18 3.41 

(25,25,90) 100.09 1.32 100.09 2.52 

(25,30,100) 100.06 1.82 100.06 3.52 

(30,30,110) 100.77 2.34 100.77 4.87 
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