
Discrete Bandwidth Allocation Considering Fairness and 

Transmission Load in Multicast Networks 
Chae Y. Lee and Hee K. Cho 

Dept. of Industrial Engineering, KAIST, 

373-1 Kusung Dong, Taejon, Korea 

 

Abstract 

As a promising solution to tackle the network heterogeneity in multicasting, layered multicast 

protocols such as Receiver-driven layered multicast (RLM) and Layered video multicast with 

retransmission (LVMR) have been proposed. This paper considers fairness as well as 

transmission load in the layered multicasting. Lexicographically fair bandwidth allocation 

among multicast receivers is considered under the constraint of minimum bandwidth 

requirement and the link capacity of the network. The problem of transmission load in the layer 

multicasting due to various user requirements is also examined by minimizing the number of 

layers. 

The bandwidth allocation is formulated as a nonlinear integer programming problem. A dual 

objective tabu search is proposed to solve the fairness and transmission load problem in 

multicast networks. Outstanding performance is obtained by the proposed tabu search. When the 

fairness objective is considered, the solution gap from the optimal solution is less than 2% in 

problems with 50 virtual sessions. The complexity of the dual objective largely depends on the 

weighting factor of the two objectives. Even in tough cases the proposed tabu search provides 

excellent solution the gap of which is within 6% from the optimal solution.  

 

Keywords: Multicast network; Fairness; Layerd transmission; Bandwidth allocation; Tabu 

search 

 1



1. Introduction 

Multicasting provides an efficient way of transmitting data from a sender to a group of 

receivers. Instead of sending a separate copy of the data to each individual group member, a 

source node sends one stream of messages to any one segment of the network on which there is 

a subscriber. An underlying routing algorithm determines a multicast tree connecting the source 

and group members. Data generated by the source flows through the multicast tree, traversing 

each tree edge exactly once. As a result, multicast is more resource-efficient and is well suited to 

applications such as teleconferencing, video-on-demand (VOD) service, electronic newspapers, 

cyber education and medical images.  

In a multicast network multiple sessions each with different group members share network 

resources simultaneously. Thus, it is ideal to provide a fair share of bandwidth to each session. 

This issue of inter-session fairness has been extensively studied in unicast networks. In case of 

multicast, the other notion of fairness, i.e., intra-session fairness has to be considered because of 

the network heterogeneity that is due to various networks connected to the Internet. Users 

having high bandwidth connectivity would prefer to receive higher rate and higher quality 

service, while users with low bandwidth connectivity would be satisfied with low rate service. 

Thus, multirate multicast technology is necessary for transmission in heterogeneous networks. 

Receiver-driven layered multicast (RLM) [10] and Layered video multicast with retransmission 

(LVMR) [11] are well known protocols for layered multicast that satisfies the multirate 

multicast. Source signal is encoded and presented to the network as a set of bit streams, called 

layers. Layers are so organized that the quality of reception is proportional to the number of 

layers received. The first layer provides basic information, and every other layer improves data 

quality.  

In layered multicast, a multicast session requires more and more layers to transmit as each 
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receiver in the multicast group requires different bandwidth due to the network heterogeneity. 

Here, increased number of layers in a session results in high overheads for sender encoding, 

multicast address allocation and receiver decoding. To prevent the high overheads required for 

layered multicast a source needs to set the number of layers to transmit and assign bandwidth to 

each layer by organizing requirement by receivers [4].  

In this paper, we are interested in multicast transmission that satisfies fair bandwidth 

allocation with lower overhead. The number of layers employed for receivers in each session 

needs to be minimized, while satisfying fairness among receivers.  

The paper is organized as follows. Section 2 discusses fairness and transmission load in 

multicast networks. A nonlinear integer programming model is presented in Section 3 for the 

bandwidth allocation problem. A dual objective tabu search is developed to solve the fairness 

and transmission load problem in Section 4. Optimal solution for the bandwidth allocation is 

discussed in Section 5. Computational results and conclusion are presented in Section 6 and 7 

respectively. 

 

2. The Issue of Fairness and Transmission Load in Multicast Network 

When a network has profound heterogeneity, the fairness must include characteristics of 

multirate multicast network. Each source of multicast session transmits data to all of its 

receivers at different rate. One of frequently used definitions of fairness in multi-rate multicast 

networks is lexicographically optimal fairness [3, 12]. Differently from the well-known max-

min [2, 7, 8, 9] fairness, the lexicographically optimal fair allocation always exists in discrete 

case [3]. A bandwidth allocation vector is lexicographically optimal, if its smallest component is 

the largest among the smallest components of all feasible bandwidth allocation vectors. Subject 

to this, it has largest second smallest component, and so on. 
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Figure 1. Network with 2 multicast sessions and 3 virtual sessions 
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As an example, consider the network in Figure 1. In the figure a virtual session is defined as a 

source and receiver pair of a session. Each virtual session may have different data quality even 

if the original content is the same as other virtual sessions. Session 1 consists of virtual session 

1 (path 1-3-4) and virtual session 2 (path 1-3-5), while session 2 consists of virtual session 3 

(path 2-3-5). The bandwidth of each link capacity is given in the figure. The max-min fair 

bandwidth vector for the virtual session 1, 2, and 3 of the network is (3, 2.5, 2.5). The fair 

bandwidth allocation is restricted by link (3, 5). When continuous allocation of bandwidth is 

allowed, the max-min fairness always exists. However, in layered transmission scheme, 

bandwidth is allocated in discrete fashion.  

In the network of Figure 1, if bandwidth is allocated in discrete layers, the max-min fair 

allocation vector does not exist. However, a lexicographically fair optimal allocation exists and 

given by (3, 2, 3) or (3, 3, 2). Note that lexicographically optimal fair bandwidth allocation is 

NP-hard in case of discrete layer allocation [3]. 

We now consider transmission load of layered transmission scheme. In layered transmission a 

signal is encoded into a number of layers that can be incrementally combined to provide 

progressive refinement. Thus transmission increases load as receivers in the same session 

require different number of layers. In view of lexicographic fairness, two allocation vectors (3, 2, 

3) and (3, 3, 2) are equally fair. However, in view of transmission load each receiver of session 
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1 requires different bandwidth layers in (3, 2, 3). In case of (3, 3, 2), the transmission load is 

reduced since two receivers of session 1 require same number of layers. 

In this paper, we are interested in discrete fair bandwidth allocation with reduced 

transmission load in multicast network with multiple sessions. In the next section, we will 

discuss modeling of the bandwidth allocation problem. 

 

3. Bandwidth Allocation Problem for Fairness and Transmission Load 

Consider a network with J multicast sessions and I multicast virtual sessions. The traffic of 

each session is transmitted from a source to a set of destination nodes across a predetermined 

multicast tree. We call the source and destination pair of a session as a virtual session. 

For a virtual session i, let xi be the bandwidth allocated to the virtual session and ui be the 

minimum bandwidth requirement, then we have 

xi ≥ ui   i = 1, …, I.  

Now, consider a link l in the network where a set of virtual sessions of session j is passing 

through. Let v(j,l) be a set of virtual sessions belonging to session j and traversing through link l. 

In the multicast tree actual bandwidth assigned to session j is determined by the maximum 

bandwidth among the virtual sessions. Thus, by letting yil be the maximum, we have 

yjl = x
),(

max
ljvi∈

i   j = 1, …, J,  l = 1, …, L. 

Also, note that total bandwidth assigned to all virtual sessions traversing through link l cannot 

exceed the link capacity. By letting s(l) be a set of sessions passing through link l, and cl be the 

link capacity, we have 

∑
∈

≤
)(lsj

ljl cy  l = 1, …, L. 

In addition to above constraints, we need to consider transmission load that depends on the 
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number of layers required for each session. Let zib be a binary variable that represents the 

bandwidth unit b allocated to virtual session i. If the allocated bandwidth units for virtual 

session i is b, then zib = 1. Otherwise, zib = 0. To compute the number of layers we also define a 

binary variable njb for a session j with allocated bandwidth b. If the bandwidth unit allocated to a 

virtual session i belonging to a session j is b, then njb = 1. Thus the number of layers in a session 

j is determined by . By letting v(j) be a set of virtual sessions belonging to session j, we 

have  

∑
=

B

b
jbn

1

....,,11
1
∑
=

==
B

b
ib Iiz  

).(,...,,1,...,,1 jviBbJjnz jbib ∈==≤  

Here, xi which is the bandwidth allocated to virtual session i, can be represented by the 

indicator variable, zib as  

∑
=

==
B

b
ibi Iizbx

1

....,,1  

Now, our objective is twofold. First, we need to allocate bandwidth to each virtual session 

such that the allocation satisfies the lexicographically optimal fairness. Secondly, we need to 

minimize the number of layers used for each multicast session.  

For the lexicographic optimal fairness we consider a nonincreasing convex function 1/xp 

where p is a large integer. Since the lexicographic optimal fairness maximizes the minimum 

component among all feasible solutions and subject to the maximization, maximizes the second 

minimum, etc., we consider the following objective function for the lexicographical optimal 

fairness as in [12]. 

Min  ∑
=

I

i

p
ix

1

/1

To improve the fairness the above objective function has to give more credit to a virtual 
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session xi with smaller value. For unit increase of bandwidth, the smaller the component xi, the 

larger the improvement of the objective function value. If the minimum bandwidth is 

maximized, then the second minimum is maximized when p is sufficiently large.  

In addition to the lexicographic optimal fairness, we consider transmission load caused by the 

number of different layers in each multicast session. As discussed earlier, the number of 

different layers for session j is given by . Thus the total number of layers to be used for 

all multicast sessions is given by . 

∑
=

B

b
jbn

1

∑∑
= =

J

j

B

b
jbn

1 1

By combining two objective functions with a factor α, our bandwidth allocation problem is 

formulated as follows. 

Minimize α + (1-α)∑∑  ∑
=

I

i

p
ix

1

/1
= =

J

j

B

b
jbn

1 1

subject to:  

xi ≥ ui     i = 1, … , I           (1) 

yjl  =      j = 1, … , J,  l = 1, …, L      (2) i
ljvi

x
),(

max
∈

l
lsj

jl cy ≤∑
∈ )(

        l = 1, … , L      (3) 

∑
=

==
B

b
ib Iiz

1
...,,11      (4) 

)(,...,,1,...,,1 jviBbJjnz jbib ∈==≤   (5) 

∑
=

==
B

b
ibi Iizbx

1

...,,1      (6) 

0 ≤ α ≤ 1 

xi ≥ 0 and integers,  are binary variables jbib nz ,
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Considering the NP-hardness of the lexicographically optimal fair allocation problem [3], the 

proposed nonlinear integer programming problem may not be effectively solved by any 

conventional optimization techniques. We consider a tabu search as a promising solution 

procedure for the above bandwidth allocation problem. Tabu search is a powerful search 

heuristic that has been successfully applied to numerous combinatorial optimization problems 

[13]. At each step of the search, neighborhood of the current solution is explored and the best 

one is selected as a new solution. The search procedure does not stop even when no 

improvement is obtained. The best solution in the neighborhood is selected, even if it is worse 

than the current solution. This strategy allows the search to avoid local optima and to explore a 

larger fraction of the solution space.  

 

4. A Dual Objective Tabu Search for the Bandwidth Allocation 

Tabu search is a high level heuristic procedure for solving optimization problems, designed to 

guide other methods to escape the trap of local optimality. It uses flexible structured memory to 

permit search information to be exploited more thoroughly than by rigid memory systems and 

memory functions of varying time spans for intensifying and diversifying the search. 

Intensification strategies utilize short-term memory function to integrate features or 

environments of good solutions as a basis for generating still better solutions. Such strategies 

focus on aggressively searching for a best solution within a strategically restricted region. A 

move remains tabu during a certain period (or tabu time size) to help aggressive search for 

better solutions. Diversification strategies, which typically employ a long-term memory 

function, redirect the search to unvisited regions of the solution space. 
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Start

In this paper, we propose a dual objective tabu search that considers fairness and transmission 

load. In the primary tabu search a solution that minimizes the fairness objective  is 

investigated with constraints (1), (2), and (3) of the formulation in Section 3. 

∑
=

I

i

p
ix

1

/1

The secondary tabu search starts with the solution obtained by the primary search. Since the 

objective of the secondary tabu search is to reduce the number of layers  at the 

sacrifice of fairness. A weighting factor 1-α is applied to transmission load. Figure 2 shows the 

overview of the tabu search.  

∑∑
= =

J

j

B

b
jbn

1 1

Both primary and secondary tabu search incorporate following three procedures as shown in 

Figure 2. 

Figure 2. Proposed tabu search procedure 
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1) Initial solution 

2) Intensification with Short-Term Memory Function 

3) Diversification with Long-Term Memory Function 

Each procedure is discussed both for the fairness (primary tabu search) and transmission load 

(secondary tabu search) in the multicast transmission networks. 

4.1 Initial solution 

Since a solution has to satisfy the minimum required bandwidth constraint, each virtual 

session xi starts with the minimum required bandwidth ui. To have an initial solution that 

satisfies link constraint (3) a virtual session with the minimum bandwidth is selected and 

increased by one unit. Tie is broken randomly. This process is continued until all virtual sessions 

are saturated with the link capacities. The initial solution for the secondary tabu search is the 

best solution obtained by the primary tabu search.  

4.2 Intensification with Short-Term Memory 

Two types of moves “drop move” and “add move” are considered for the primary and 

secondary tabu search. In the primary search, a drop move is performed by selecting a virtual 

session xi with the largest bandwidth. Its bandwidth xi is decreased by one unit. Then add moves 

are implemented. For the lexicographically fair allocation of the bandwidth an add move selects 

a virtual session with the minimum bandwidth. It then increases the minimum bandwidth by one 

unit. This is because improvement of the fairness objective function is maximized by 

the smallest x

∑
=

I

i

p
ix

1

/1

i. Tie is broken randomly. The above add moves are continued until no virtual 

session can be selected by the link capacity constraint. Tabu restriction is applied to a virtual 

session in the tabu list to restrict reversed or repeated move within a specific tabu time iterations. 
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Intensification procedure is continued until the search has no improvement for I_max 

consecutive iterations.  

For the secondary tabu search, drop and add moves are applied to minimize the number of 

layers. In drop move the search selects a virtual session with maximum bandwidth and 

decreases its bandwidth to the nearest unit in the same session. Add move selects a virtual 

session with the minimum bandwidth and increases its bandwidth to the smallest unit higher 

than its current unit in the same session. Add moves are continued until no virtual session can be 

selected by the link capacity constraint.  

4.3. Diversification with Long-Term Memory 

Diversification strategy is helpful to explore new unvisited regions of the solution space. It 

enables the search process to escape from local optimality. The diversification is performed 

when the intensification process has no solution improvement for I_max consecutive iterations. 

This diversification strategy has the effect of restarting the tabu search from a solution that is far 

away from the solutions obtained in the intensification procedure. In the diversification 

procedure, a fraction of virtual sessions are selected and the bandwidth of each virtual session is 

increased or decreased depending on the historical frequencies of add and drop moves. The 

diversification procedure applied for the bandwidth allocation is as follows. 

Step 1. For each virtual session, examine the frequency of add and drop moves applied. 

Step 2. Order the frequency from the minimum to the maximum and select a fraction of virtual 

sessions starting from the minimum frequency. 

Step 3. For each virtual session selected if the historical number of add moves is larger than 

drop moves, then decrease the bandwidth by one unit. Otherwise, increase the bandwidth by 

one unit.  

 

 11



5. Optimal Solution of the Bandwidth Allocation 

In this section, we discuss the optimal solution of the dual objective bandwidth allocation 

problem. The bandwidth allocation problem proposed in Section 3 is a nonlinear integer 

problem. It is the nonlinear term that makes the problem hard to attack. However, the 

nonlinear function 1/x

∑
=

I

i

p
ix

1

/1

i
p can be converted into a piecewise linear function g(xi) which is 

specified by points (1, 1/1p), (2, 1/2p), (3, 1/3p), …, and (B, 1/Bp), where B is the maximum 

available bandwidth units. Let qb(x) be a linear equation to connect (b, 1/bp) and (b+1, 1/(b+1)p). 

Then, g(xi) is a piecewise linear convex function of the form maxb=1,…,B qb(x) [14]. Now by 

substituting the nonlinear term with and adding constraint g(x∑
=

I

i

p
ix

1

/1 ∑
=

I

i
ixg

1

)( i) = 

maxb=1,…,B qb(xi) for i = 1, …, I, the formulation given in Section 3 can be converted into a linear 

integer programming problem. 

In Section 6, we will compare the performance of the proposed tabu search with the optimal 

solution by CPLEX [1] which is a well known branch and bound procedure.  

 

6. Computational Results 

In this section, we discuss the computational results of the Tabu Search for the bandwidth 

allocation. Three different sizes of multicast networks are generated as in Table 1. In each 

multicast network ten problems are tested with different link capacities. All solution procedures 

are run on a Pentium III-500MHz PC. 

Before solving the bandwidth allocation problem we test the performance of tabu parameters: 

the tabu time size and I_max for the intensification procedure, the fraction of virtual sessions for 

diversification, and the stopping rule D_max of the diversification.  
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Number of 
links 

Number of  
sessions 

Number of 
virtual sessions

Minimum requirement of 
 each virtual session 

10 3 10 1~3 

20 6 30 1~3 

30 9 50 1~3 

Table 1. Multicast networks 

The number of virtual sessions 10 30 50 

Primary 2 5 7 Tabu  
time size Secondary 2 4 6 

Table 2. Tabu time size of each problem 

Procedure Primary Secondary 

Diversification 

fraction 
1/2 1/3 1/4 1/2 1/3 1/4 

Objective 

function value 
1.943 1.912 1.998 2.415 2.384 2.401 

Table 3. Fraction of virtual sessions for diversification 

Our test shows that the tabu time size is dependent on the size of virtual sessions. Larger tabu 

time size shows better performance as the problem size increases. However, the effect of tabu 

size is not that critical in problems with same number of virtual sessions. Tabu size with 

10~20% of the number of virtual sessions provides slightly better solutions. Appropriate tabu 

time size is shown in Table 2 for each problem size.  

The test of I_max is performed with 30 virtual session problems as in Figure 3. By assuming 

that an appropriate value of I_max is proportional to the number of virtual sessions I, test is 

performed with five different values in primary and secondary tabu search. Figure 3 shows that 

I_max = 5.2I is appropriate for the primary tabu search and I_max = 4.0I for the secondary. 
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(a) primary tabu search 

(b) secondary tabu search 

Figure 3. Test of I_max with 30 virtual sessions 
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Figure 4. Test of D_max with 30 virtual sessions 
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Fraction of virtual sessions for diversification and the maximum number of diversification in 

tabu search are deeply related to the solution quality. Experiments with 30 virtual sessions are 

shown in Table 3. For both the primary and secondary tabu search, 1/3 of virtual sessions is 

appropriate to be selected for diversification. The test on D_max is also performed with 30 

virtual sessions. 50 problems are experimented to determine D_max. Among 50 problems the 

portion that gives no further improvement is plotted after successive diversification in Figure 4. 

From the figure, it seems to be reasonable to perform six diversifications for the primary and 

four for the secondary tabu search. Longer diversification phase for the primary tabu search 

implies more difficulty of handling the fairness objective. In fact the nonlinear term in the 

objective function with large number of virtual sessions must be hard to attack compared to the 

linear term with small number of sessions. Based on the preliminary test for the proposed tabu 

parameters we now investigate the performance of tabu search for the bandwidth allocation 

problems.  

6.1 Bandwidth Allocation for the Fairness Objective (α = 1) 

We first examine the fairness performance with the proposed primary tabu search. The 

genetic algorithm [12] and CPLEX [1] are also employed to compare solutions.  

Table 4 shows the result of the primary fairness objective with 30 virtual sessions. As shown 

in the table, the proposed tabu search gives better solution quality compared to the genetic 

algorithm [12]. Optimal solutions are obtained by the proposed tabu search in all cases except 

for the problem 4 and 8.  

Experiments are also performed for problems with 10 and 50 virtual sessions. Note that the 

number of virtual sessions is dependent on the number of multicast sessions in the network and 

the number of receivers in each session. Thus, 10, 30, and 50 virtual sessions are practical 

instances with the number of sessions given in Table 1. The proposed tabu search generated 
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optimal solutions in all cases with 10 virtual sessions, and three cases with 50 virtual sessions. 

Solution gap from the optimal solution is less than 2% in problems with 50 virtual sessions. GA 

also presents optimal solutions in all cases with 10 virtual sessions. However, the gap in the 

worst case reaches 7% in problems with 50 virtual sessions even with increased CPU times. 

CPU seconds by three search methods are compared as in Figure 5. 

6.2 Bandwidth Allocation for the Dual Objectives (α < 1) 

Performance of the proposed tabu search is experimented with two objectives: fairness and 

transmission load. Table 5, 6 and 7 respectively show the fairness and number of layers 

employed for transmission in 10, 30 and 50 virtual sessions. In case of 10 and 30 virtual 

sessions, since the fairness value is much smaller than the number of layers, solutions are 

compared with α = 0.9. In problems with 10 virtual sessions, proposed tabu search always gives 

optimal solutions as shown in Table 5. In problems with 30 virtual sessions, the transmission 

load is reduced when α = 0.9 compared to the case of α = 1. Number of layers presented by the 

tabu search exceeds that by the optimal solution by one unit in the worst cases. The fairness 

objective value by the tabu search exceeds 3% of optimal solutions obtained by the CPLEX.  

The bandwidth allocation with 50 virtual sessions is shown in Table 7. The table shows that 

the fairness among virtual sessions is relaxed with reduced transmission load as α decreases. In 

case of α = 1 the proposed tabu search solves only the fairness problem. It thus presents 

relatively higher number of layers compared to the optimal solution as shown in problem 4 and 

9. However, the transmission load is dramatically reduced and converges to the optimal solution 

with the dual objective tabu search when α < 1. The solution gap of the combined objective 

values by the tabu search is within 6% even in tough cases with α = 0.9 and 0.8. Finally, Figure 

6 compares CPU times by proposed tabu search and CPLEX [1]. The figure demonstrates that 

the proposed tabu search is time efficient compared to the CPLEX. The efficiency is critical in 
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Problem Procedure Solution vector 
Fairness 

value 

CPU 

seconds

Tabu search ( 3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8 ) 1.518 0.943 

GA ( 2,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8 ) 1.608 12.823 1 

CPLEX ( 3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8) 1.518 1.631 

Tabu search ( 3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6 ) 1.565 1.142 

GA ( 3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6) 1.565 10.326 2 

CPLEX ( 3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6 ) 1.565 1.502 

Tabu search ( 2,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,7,7,7,8,9,12,12 ) 1.892 1.087 

GA ( 2,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,7,7,7,8,9,12,12 ) 1.892 9.213 3 

CPLEX ( 2,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,7,7,7,8,9,12,12 ) 1.892 1.591 

Tabu search ( 3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,8,11,12,12,13 ) 1.436 1.362 

GA ( 3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,8,11,12,12,14 ) 1.520 9.723 4 

CPLEX ( 3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,7,7,11,12,12,13 ) 1.434 1.634 

Tabu search ( 3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,8,12,12,16 ) 1.492 0.998 

GA ( 3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,12,12,16 ) 1.579 12.423 5 

CPLEX ( 3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,8,12,12,16 ) 1.492 1.623 

Tabu search ( 2,3,3,3,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,8,8,8,11,14,15 ) 1.547 1.202 

GA ( 2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,8,8,8,11,14,15 ) 1.581 12.592 6 

CPLEX ( 2,3,3,3,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,8,8,8,11,14,15 ) 1.547 1.603 

Tabu search ( 3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,12,12,16 ) 1.579 1.332 

GA ( 3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,12,12,16 ) 1.579 12.693 7 

CPLEX ( 3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,12,12,16 ) 1.579 1.511 

Tabu search ( 2,3,3,3,3,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,8,8,8,9,9,9,10,11,12 ) 1.568 1.059 

GA ( 2,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6,6,6,7,7,7,8,8,8,8,9,9,11,11,12 ) 1.592 8.485 8 

CPLEX ( 2,3,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,8,8,8,8,9,9,10,11,12 ) 1.549 1.932 

Tabu search ( 2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,8,8,8,8,9,10,13,13,13,13 ) 2.077 1.101 

GA ( 2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,8,8,8,8,9,10,13,13,13,13 ) 2.077 9.287 9 

CPLEX ( 2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,8,8,8,8,9,10,13,13,13,13 ) 2.077 1.887 

Tabu search ( 2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,7,7,7,8,9,10,11 ) 2.019 1.293 

GA ( 2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,7,7,7,8,9,10,11 ) 2.019 10.309 10 

CPLEX ( 2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,7,7,7,8,9,10,11 ) 2.019 1.409 

Table 4. Bandwidth allocation for fairness objective with 30 virtual sessions 
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Figure 5. CPU seconds for the fairness objective 
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Figure 6. CPU seconds for the dual objectives with 50 virtual sessions 
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α = 1.0 α = 0.9 

 
Problem Procedure Fairness 

value 

# of  CPU 

seconds 

Fairness 

value 

# of 

 layers 

CPU 

seconds  layers 

Tabu search 0.239 5 0.156 0.314 3 0.303
 1 

CPLEX 0.239 5 0.388 0.314 3 1.584

Tabu search   0.241 4 0.143 0.265 3 0.312
2 

CPLEX 0.241 4 0.332 0.265 3 1.391
 

Tabu search 0.241 5 0.165 0.263 3 0.283
3 

 CPLEX 0.241 5 0.291 0.263 3 1.574

Tabu search 0.269 7 0.101 0.400 3 0.232
4 

CPLEX 0.269 7 0.291
 

0.400 3 1.634

Tabu search  0.189 4 0.089 0.193 3 0.216
5 

CPLEX 0.189 4 0.292 0.193 3 1.483

Tabu search 
 

0.178 5 0.122 0.181 3 0.192
6 

CPLEX 0.178 5 0.313 0.181 3 1.531

Tabu search 0.241 4 0.128 0.257 3 0.250
7 

CPLEX 0.241 4 0.311

 
0.257 3 1.618

Tabu search 
 

0.255 6 0.113 0.267 3 0.213
8 

CPLEX 0.255 6 0.302 0.267 3 1.574

Tabu search 0.300 5 0.097 0.308 3 0.235
9 

CPLEX 0.300 5 0.298
 

0.308 3 1.616

Tabu search  0.250 5 0.131 0.255 3 0.253
10 

CPLEX 0.250 5 0.221 0.255 3 1.544

Table 5. Performance of tabu search with 10 virtual sessions 
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 α = 1.0 α = 0.9 

Problem Procedure Fairness 

value 

# of 

layers 

CPU 

seconds 

Fairness 
value 

# of 

layers 

CPU 

seconds 

Tabu search  1.518 10 0.943 1.632 7 2.023
1 

CPLEX 1.518 10 1.631 1.632 7 7.158

Tabu search 
 

1.565 11 1.142 1.726 6 2.481
2 

CPLEX 1.565 11 1.502 1.678 6 7.540

Tabu search  1.892 10 1.087 2.042 8 2.337 3 
CPLEX 1.892 10 1.591 2.003 7 7.923

Tabu search  1.436 11 1.362 1.563 8 2.141
4 

CPLEX 1.434 10 1.634 1.547 7 8.062

Tabu search 1.492 11 0.998

 
1.602 7 2.094

5 
CPLEX 1.492 11 1.623

 
1.598 7 7.050

Tabu search  1.547 10 1.202 1.653 6 2.442
6 

CPLEX 1.547 10 1.603 1.653 6 6.874

Tabu search 1.579 10 1.332
 

1.597 6 2.442
7 

CPLEX 1.579 10 1.511 1.597 6 7.031

Tabu search 1.568 11 1.059 1.583 7 2.363
8 

CPLEX 1.549 10 1.932
 

1.556 6 7.242

Tabu search 2.077 12 1.101 2.093 6 2.545
9 

CPLEX 2.077 12 1.887 2.093 6 7.652

Tabu search  2.019 10 1.293
 

2.043 7 2.511
10 

CPLEX 2.019 10 1.409 2.031 7 8.123

Table 6. Performance of tabu search with 30 virtual sessions 
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Table 7. Performance of tabu search with 50 virtual sessions 

α = 1.0 α = 0.9 α = 0.8 α = 0.7 

Problem Procedure Fairness 

value 

# of 

layers

CPU 

seconds 

Fairness

value 

# of 

layers

CPU 

seconds

Fairness 

value 

# of 

layers

CPU 

seconds 

Fairness

value 

# of 

layers

CPU 

seconds

Tabu search 2.361 3.2 2.752 17 7.8 3.413 13 6.8 4.73628 11 5.3
1 

CPLEX 2.352 26 4.1 2.743 15 113.8 3.321 12 100.4 4.583 10 51.7

Tabu search 

 

 

 

 

 

3.293 26 3.8 3.712 16 5.7 4.298 12 6.1 6.104 11 5.3
2 

5.1 3.565 15 129.2 4.162 11 107.3 5.972CPLEX 3.282 27 10 52.8

Tabu search 2.975 30 3.3 3.513 17 6.7 4.129 12 5.9 5.629 10 4.7
3 

3.7 115.92.975 30 3.472 15 4.032 11 102.6 5.521 10 55.3CPLEX 

4.5 7.32.475 29 2.789 18 3.376 11 6.7 4.826 10 5.1Tabu search  
4 

5.0 103.52.464 25 2.784 17 3.246 11 99.8 4.826 10 49.8CPLEX 

3.6 7.12.611 31 3.031 17 3.620 13 6.9 5.035 11 5.8Tabu search 
5 

4.7 101.82.611 31 2.976 15 3.542 12 109.7 5.035 11 47.6CPLEX 

3.9 6.52.425 30 2.654 15 3.213 12 6.2 4.472 11 4.8Tabu search  
6 

5.9 110.32.422 30 2.654 15 3.213 12 121.6 4.340 10 55.7CPLEX 

3.2 6.82.184 29 2.610 16 3.298 12 5.8 3.854 11 8.3Tabu search  
7 

5.3 107.22.172 28 2.532 15 3.172 12 115.3 3.854 11 51.3CPLEX 

2.6 7.32.385 27 2.853 16 3.194 13 6.2 4.593 11 5.3Tabu search 
8 

2.373 26 3.2 2.752 16 114.2 3.105 12 121.7 4.583 10 53.2CPLEX 

2.558 30 3.6 2.866 17 7.1 3.509 13 6.9 4.240 11 6.2Tabu search 
9 

2.521 25 4.9 2.863 15 120.3 3.427 12 112.7 4.186 10 52.1CPLEX 

2.633 28 4.2 3.073 18 5.9 3.417 14 5.7 4.386 10 5.1Tabu search 
10 

2.633 28 7.0 2.984 17 109.8 3.532 13 109.5 4.386 10 48.1CPLEX 
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real applications when multicast members frequently leave and join their group. In this case 

each source of multicast session needs to periodically update the bandwidth for its receivers, 

which must be a burden to the network when the size of the problem increases. 

 

7. Conclusion 

Bandwidth allocation problem in multicast networks is examined by taking fairness and 

transmission load into account. Fairness is related to the discrete number of bandwidth units in 

layered transmission in multicast networks. Minimizing the number of layers employed in all 

session is also considered to reduce the transmission load. 

The problem is formulated as a nonlinear integer programming that provides bandwidth 

allocation to each virtual session subject to the minimum bandwidth requirement, actual 

bandwidth assigned to each session in a link, and the link capacity constraint. The objective is to 

have lexicographically fair allocation among virtual sessions and to minimize the number of 

layers employed for all sessions.  

A dual objective tabu search is proposed to solve the bandwidth allocation problem. It 

initially solves fairness then transmission load by slightly relaxing the fairness. Add and drop 

moves are employed to intensify the solution according to the short-term memory. 

Diversification by the historical frequency is implemented with the long-term memory.  

Computational experiments are performed in multicast networks with 10, 30, and 50 virtual 

sessions. First, fairness performance is examined with the proposed primary tabu search. The 

proposed tabu search generates optimal solutions in all cases with 10 virtual sessions. In 

problems with 30 and 50 virtual sessions the solution gap from the optimal solution is less than 

2%. The GA approach [12] is also examined. The performance, however, is not so desirable in 

large problems. In problems with 50 virtual sessions the solution gap in reaches up to 7% even 
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with increased CPU times. The effectiveness of proposed tabu search is demonstrated as the 

network size increases. 

Secondly, the combined objective of the fairness and the transmission load is experimented. 

In problems with 10 and 30 virtual sessions outstanding performance is obtained with the 

proposed tabu search. The optimal transmission load is obtained in most cases except some 

cases in 30 virtual sessions. The excellence of the proposed tabu search is demonstrated in 50 

virtual session problems. The transmission load is dramatically reduced and converges to the 

optimal even in tough cases of the dual objectives. 
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