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Abstract 

Overlay multicast makes use of the Internet as a low level infrastructure to provide multicast 

service to end hosts. The strategy of overlay multicast slides over most of the basic deployment 

issues associated with IP multicast, such as end-to-end reliability, flow and congestion control, 

and assignment of an unique address for each multicasting group. 

Since each multicast member is responsible for forwarding multicast packets, overlay 

multicast protocols suffer from multicast node failures. To cope with node failures in the overlay 

multicast networks, the employment of multicast service nodes (MSNs) is considered which 

allows relatively high processing performance to cover the disconnected nodes. We are 

interested in minimizing the cost of both the MSNs and additional links when a node failure 

occurs. 

Overlay multicast tree rearrangement to connect multicast members is discussed and 

formulated as a binary integer programming problem. The tree rearrangement problem is solved 

by a heuristic based on the Lagrangean relaxation. The performance of the proposed algorithm 

is investigated by carrying out experiments in 50 and 100 node problems. The employment of 

MSNs is illustrated to be dependent on the end-to-end delay bound in overlay networks and the 

degree constraint of member nodes. 
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1. Introduction 

Multicasting provides an efficient way of transmitting data from a sender to a group of 

receivers. Instead of sending a separate copy of the data to each individual group member, a 

source node sends identical messages simultaneously to multiple destination nodes. An 

underlying multicast routing algorithm determines a multicast tree connecting the source and 

group members. Data generated by the source flows through the multicast tree, traversing each 

tree edge exactly once. As a result, multicast is more resource-efficient and is well suited to 

applications such as teleconferencing, video-on-demand (VOD) service, electronic newspapers, 

cyber education and medical images. However, despite the conceptual simplicity of IP multicast 

and its obvious benefits, its deployment is difficult due to the complexity of IP multicast 

technology and lack of applications.  

To cope with the increasing traffic of multimedia contents, the study on multicasting will 

become more active. Recent efforts to provide multicast delivery have thus shifted to overlay 

multicast that builds a transport-layer overlay network among members of a multicast group. 

Recent topics related to overlay multicast includes [1, 2, 3, 4, 5, 6, 7, 8, 11] as an alternative to 

IP multicast. Overlay multicast uses the Internet as a low level infrastructure to provide 

multicast service to end hosts. Many basic deployment issues such as end-to-end reliability, 

congestion control, and assignment of an unique address for each multicasting group that are 

associated with IP multicast can be solved with overlay multicast. 

Current overlay multicast projects can be classified into two catalogs according to the 

structure: end-to-end overlay [1, 3, 5] and proxy-based overlay [2, 4]. In end-to-end overlay, 

every member in the multicasting group shares the responsibility to forward data to other 

members. End hosts organize themselves into a multicasting tree. We call these end hosts 

multicast nodes in the end-to-end overlay case. Scattercast [2] and Overcast [4] are typical 
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examples of proxy-based overlay structure that form a hierarchical structure compared to end-

to-end overlay. The multicasting service is performed with the help of proxy nodes, which can 

duplicate data and forward them to end hosts with predefined routing algorithm. In proxy-based 

overlay, proxy is the multicast node and end hosts just receive the multicast data from the 

corresponding proxies.  

Representative research [7] on overlay multicast protocol includes Scattercast, Overcast, 

Narda [3] and ALMI [5]. Each protocol has different design objectives, which leads to different 

properties. Narda and Scattercast intend to minimize the delay from a multicast source to each 

member. ALMI strives to minimize the multicast tree cost, where the cost of each link is defined 

as the round-trip delay between group members. Overcast, on the other hand, maximizes 

available bandwidth for each member. In the tree construction process, Narda and Scattercast 

use a mesh-first approach. That is, group members are first connected into a mesh and then the 

multicast tree is built on top of it. On the other hand, Overcast and ALMI use a direct approach. 

The step to build the mesh is bypassed and the multicast tree is formed directly. 

In overlay multicast, since multicast members are responsible for forwarding multicast 

packets, they suffer from multicast node failures. When a multicast node fails, rapid multicast 

tree recovery is essential to distribute multicast data to disconnected nodes. However, many 

researchers have focused their attention mainly on constructing the initial overlay multicast tree 

[1, 2, 3, 4, 5, 6, 8, 11]. In this paper, we are interested in solving the tree rearrangement problem 

by establishing new connections for the multicast members when a multicast node failure occurs. 

 

2. Packet Delivery and Node Failures in Overlay Multicast Networks 

Overlay multicast avoids the deployment hurdles of IP multicast at the cost of data delivery 

latency due to its inefficient multicast data distribution. This inefficiency is illustrated in the 
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example network of Figure 1. In Figure 1, nodes A, B, C, D, and E are members of a multicast 

group, nodes R1, R2, and R3 are routers in the network, and the dashed lines connecting the 

nodes are physical links. The flows in Figure 1 (a) illustrate how IP multicast forwards data sent 

by A to the other members of the group. Figure 1 (b) shows a possible overlay multicast traffic 

flow. Figure 1 (c) shows the overlay without the underlying physical network. Comparing 

Figure 1 (a) and (b), it is clear that data delivery using overlay multicast experiences longer 

delay than traditional IP multicast delivery. This example shows that latency between the source 

and the multicast members in an overlay multicast largely depends on the design of the overlay 

route. Thus, in this paper, we assume that end-to-end delay constraint is required to avoid 

excessive delay.  

Note in Figure 1 (c) that each link in the overlay multicast tree represents an independent 

unicast session. Node C of Figure 1 (c) handles three unicast sessions. However, each multicast 

node has a limit in the number of unicast sessions that can be handled simultaneously. It is due 

to the CPU performance, network interface card capacity, buffer size and others. Thus we 

consider the degree constraint of a multicast node in the overlay multicast tree. The degree 

constraint represents the maximum number of unicast sessions that a multicast node can handle 

depending on the capacity. 

 

Figure 1. Comparison of packet delivery 
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Overlay multicast can also be used in inter-domain multicast. Only a host from each domain 

receives the multicast data stream from the remote sender via the overlay multicast. The other 

receivers in the domain receive the application data stream from the host as illustrated in Figure 

2. The domain in this paper represents a domain that is managed by a common multicast 

protocol.  

Now, consider a tree rearrangement in case of a node failure. In Figure 3, suppose that node A 

has failed in the overlay multicast tree. Thus, the children of node A have to rejoin the multicast 

session. The overlay multicast tree is divided into several fragments as shown in Figure 3 (b). 

Figure 3 (c) shows the case where the end-to-end delay constraint is not satisfied by some nodes 

after the multicast tree rearrangement, due to the degree bound of the node. The end-to-end 

delay can be reduced by the employment of a node with a higher degree in the overlay multicast 

tree [8]. Thus, to satisfy the end-to-end delay bound, we consider the employment of the 

multicast service nodes (MSNs) which allow relatively high processing performance by 

covering all the disconnected nodes. 

 The employment of an MSN requires additional links to connect the disconnected multicast 

nodes. The overlay multicast tree rearrangement, therefore, causes expenses for the MSNs and 

the links. For efficient tree rearrangement, special consideration is required in the selection of 

the MSNs and additional links. In this paper, we are interested in minimizing the cost of both 
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the MSNs and additional links when a node failure occurs. 
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(d) Tree rearrangement with the delay constraint  
Figure 3. Node failure and tree rearrangement 
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3. Multicast Tree Rearrangement in Overlay Multicast Networks 

Given a graph G = (V, E) where V is the set of nodes and E is the set of links, consider an 

overlay multicast tree, T = (N, E1) where N ⊂ V is the set of multicast nodes and E1 ⊂ E is the 

set of links in T. Let R ⊂ N be the set of multicast nodes to rejoin the multicast tree due to a 

node failure. The set of the black rectangle nodes in Figure 3 corresponds to R. 

For a rejoin node m∈R, a single path is required to connect the node to the multicast source. 

If no path exists between the multicast source and node m, the tree rearrangement is impossible. 

However, by assuming at least one path between the multicast source and node m, the failed tree 

is rearranged to connect every multicast node. Let xij
m be a binary variable to represent a link 

(i,j) that is employed for a path between the source and rejoin multicast member m. If link (i,j) is 

employed to connect the source and node m, then xij
m = 1. Otherwise, xij

m = 0. The dotted lines 

of Figure 3 (c) and (d) represent links with xij
m = 1. Then the following relation holds for every 

node including the source node s. 

∑ ∑
≠ ≠

∈==−
ij ik

m
ki

m
ij Rmallandsiforxx 1     

∑ ∑
≠ ≠

∈∈=−
ij ik

m
ki

m
ij RmallandsmViforxx },/{0  

∑ ∑
≠ ≠

∈=−=−
ij ik

m
ki

m
ij Rmallandmiforxx 1  

In the above constraints, notice that several paths between the source and rejoin nodes may 

possibly traverse through link (i,j). Since the multicast tree rearrangement problem considers the 

cost of each additional link, we introduce a constant M to reflect the multiple new paths that 

share the same link. Let yij represent the adoption of link (i,j) for the new paths, then the 

following equation holds.  

∑ ∑ <≤+
m m

ij
m

ji
m

ij jiforMyxx  

Note that the above equation holds for any link in the overlay multicast tree.  
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Now, as discussed in the previous section, data delivery in the overlay multicast tree is 

performed by independent unicast sessions. Because each multicast node including the MSN 

has a capacity limit in the number of simultaneous unicast sessions, we consider the degree 

constraint of a multicast node. The constraint represents the number of unicast sessions a 

multicast node can handle simultaneously. By letting wi be the degree constraint of node i, we 

have 

∑ ∑
≠ ≠

≤+
ij ik

iikiij iallforzwyy  

In addition to the above constraints, we need to consider the end-to-end delay between the 

source node and multicast members. In this problem, we assume that every multicast member 

has a delay bound. In other words, every path between the source and a rejoin node has to 

satisfy the delay bound constraint. By letting dij be the link delay and D be the end-to-end delay 

bound, we have  

RmallforDxd
Eji

m
ijij ∈≤∑

∈),(

 

Now, we need to minimize the cost of the newly installed MSNs and that of the newly 

included links. Let ui and cij respectively be the cost of the newly installed nodes and links to 

rearrange the multicast tree. Then the total cost is given by ∑
∈Li

ii zu + ∑
<

∈
ji

Eji
ijij yc

2),(

 where L ⊂ V is 

a set of candidate MSNs and E2 ⊂ E is a set of links newly included into the overlay multicast 

tree. From the above discussion, the multicast tree rearrangement problem can now be 

formulated as follows. 

Problem P: 

Minimize  ∑ ∑
<

∈ ∈

+

ji
Eji Li

iiijij zuyc
2),(

subject to:  
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    (6) 

xij
m, yij, zi are binary variables 

Considering the NP-hardness of the overlay multicast tree problem without the delay 

constraint [11], the proposed binary integer programming problem is NP-hard. In the above 

formulation constraints (1), (2) and (3) are well known constraints for the shortest path problem. 

Thus, relaxation of constraints (4), (5) and (6) may lead the problem to a less complicated 

version. Lagrangean relaxation is a general solution strategy for solving such a relaxed problem. 

The procedure permits us to decompose a problem into several easy subproblems by exploiting 

its special structure. This solution approach is used for solving many models with embedded 

network structure, such as the one considered in [10, 15]. In fact, the Lagrangean relaxation 

leads the overlay multicast tree reconstruction problem into three decomposed subproblems. 

The first subproblem is reduced into a simple shortest path problem where many sophisticated 

algorithms are available. The other two subproblems are reduced into unconstrained 

minimization problems that are easy to handle. Therefore, in the next section we thus develop a 

Lagrangean relaxation algorithm as a promising solution procedure for the overlay tree 

rearrangement problem.  
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4. Lagrangean Relaxation Based Heuristic for Tree Rearrangement 

 In this section, we consider the Lagrangean relaxation [9] to solve the problem formulated in 

Section 3. The relaxed problem is decomposed into three subproblems which can easily be 

solved by employing the known algorithms for the underlying network structures [10].  

Consider the tree rearrangement problem P formulated in the previous section. The model is 

an integer programming problem which is, in general, difficult to solve. Rather than solving the 

difficult optimization problem directly, we combine the cumbersome constraints with the 

original objective function, where some multiplier values act as penalty factors. Then the 

problem as a whole is transformed to a more tractable form. The motivation for adopting this 

approach is based on the fact that the original problem P has an attractive substructure, the 

shortest path problem, which we would like to exploit algorithmically. 

Let us discuss the Lagrangean relaxation procedure in more detail. By relaxing constraints (4), 

(5), and (6), the relaxed problem PL is obtained as follows. 

Problem PL 

Minimize ZL(λ) =  

∑

∑∑ ∑

∈

<
∈∈ ∈
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The Lagrangean multipliers λ1, λ2 and λ3 correspond to the constraint sets (4), (5) and (6) 

respectively. Since λ1(i,j) is defined only for i<j, we let λ1(i,j) = λ1(j,i) for computational 

convenience. Here, note that problem PL can be decomposed into following three independent 

subproblems: 

Subproblem PL1 

Minimize  ∑ ∑
∈ ∈

−+
Rm Eji

m
ijij Dmxdmji ))())(),((( 3

),(
31 λλλ
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∑ ∑
≠ ≠

∈==−
ij ik

m
ki

m
ij Rmallandsiforxx 1     

∑ ∑
≠ ≠

∈∈=−
ij ik

m
ki

m
ij RmallandsmViforxx },/{0    

∑ ∑
≠ ≠

∈=−=−
ij ik

m
ki

m
ij Rmallandmiforxx 1    

xij
m are binary variables 

 

Subproblem PL2 
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Subproblem PL3 

Minimize  ∑
∈

−
Li

iii ziwu ))(( 2λ

 

For a specific rejoin node m, subproblem PL1 is a shortest path problem. Subproblem PL2 and 

PL3 are unconstrained minimization problems. Now we present a systematic solution procedure 

for the decomposed subproblems. 

(i) Solution to subproblem PL1 
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The well-known Dijkstra’s algorithm [9, 14] is used for fixed m in subproblem PL1. The 

algorithm finds the shortest path from the source node to the rejoin multicast node m in a 

network. Dijkstra’s algorithm solves the shortest path problem in O(N2) time. Since totally m 

shortest path problems have to be solved at every iteration, the computational complexity of 

subproblem PL1 is O(mN2). 

(ii) Solution to subproblem PL2 

Subproblem PL2 is an unconstrained minimization problem. If the coefficient of yij is negative 

in the objective function, then yij = 1 minimizes the objective function value of subproblem PL2. 

Otherwise, yij = 0. Thus, the decision criterion of yij is as follows. 

Let lij = ))()(),(( 221 jiMjicij λλλ ++−  

yij = 0 if lij ≥ 0 

 yij = 1 otherwise 

(iii) Solution to subproblem PL3 

Subproblem PL3 is also an unconstrained minimization problem. Thus, the decision criterion 

of zi is as follows.  

Let vi = )(2 iwu ii λ−  

Zi = 0 if vi ≥ 0 

 zi = 1 otherwise 

 

A solution to the Lagrangean relaxation problem PL is obtained by solving the above 

subproblems. However, the solution to PL is usually not a feasible solution to the original 

problem P. Thus, a feasible solution is obtained at each iteration as follows. The solution 

acquired in Lagrangean relaxation problem PL is transformed into tree form through Step 1 and 

Step 2. Step 3 makes the above solution satisfy the delay and degree constraints by 

 12



reconstructing the feasible path between the source and rejoin node m. The solution in Step 3 is 

further improved in Step 4. Let p(m) be an existing path between the multicast source and rejoin 

node m, employed for the current multicast tree, and let p′(m) be a new path between the 

multicast source and rejoin node m. In Step 4, if p′(m) has lower cost than p(m), p(m) is 

removed from the multicast tree and p′(m) is added to the multicast tree. The heuristic for 

generating feasible solutions is as follows. 

Step 1.  yij = 0  for all i, j. 

   zi = 0  for all i. 

Step 2.  If Σmxij ≥ 1, yij = 1. 

   If (yij = 1) and (i ∈ P), zi = 1. 

   If (yij = 1) and (j ∈ P), zj = 1. 

Step 3.  Check feasibility for each node m.   

If the solution is feasible for all node m, then Goto Step 4. 

   Otherwise, update the network for feasible node m 

  and compute Dijkstra’s algorithm to recompute xij
m for infeasible node m.

   Goto Step 1. 

Step 4. If termination criterion is satisfied, 

  While all rejoin nodes are not searched, 

   Select a rejoin node m that is not searched. 

Find a p′(m). 

If p′(m) has lower cost than p(m),  

p(m) is removed from the current solution.  

p′(m) is added to the current solution. 

  Stop. 
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 Otherwise, Stop. 

According to the Lagrangean bounding principle [9] we can calculate the maximum allowable 

error range for each of the feasible solutions obtained. For any vector λ of the Lagrangean 

multipliers, the objective function value ZL(λ) of the Lagrangean dual function is a lower bound 

to the optimal objective function value ZP* of the original optimization problem P. Thus, we 

have 

ZL(λ) ≤ ZP*. 

The bounding principle immediately implies one advantage of the Lagrangean relaxation 

approach. The method gives us a useful termination criterion involving maximum allowable 

error range. At each iteration, Lagrangean relaxation problem PL is solved by using updated 

multiplier value λ. A feasible solution to the problem P is then generated via the proposed 

heuristic from the solution of the relaxed problem. Let ZP be the objective function value of 

problem P by the feasible solution. Then the maximum allowable error range ε is defined as 
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Figure 4. Procedure of the proposed heuristic 
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Lagrangean relaxation problem PL is repeatedly solved by using updated multiplier values 

until the maximum allowable error range ε satisfies a termination threshold or the number of 

iterations exceeds the threshold limit. We use the subgradient method [10, 13] for updating 

Lagrangean multipliers. Figure 4 shows the overall procedure of the proposed algorithm. 

 

5. Computational Results 

In this section, we discuss the computational experiment of the Lagrangean relaxation based 

heuristic for the tree rearrangement problem. Multicast networks with 50 and 100 nodes are 

generated. In each network, links are randomly generated such that the total number of links 

becomes E  = 5V . The average link cost is assumed to be 10. Each link has average delay 

value of three. The end-to-end delay bound has the value of 10 and 20 in the network with 50 

nodes and 15 and 25 in the network of 100 nodes. The average cost of MSN is assumed to be 20 

and degree constraint has the value of 3 and 8 in the network with 50 nodes. These values are 5 

and 15 in the network of 100 nodes. All solution procedures are run on a Pentium III-660MHz 

PC.  

Table 1 and 2 respectively show the result of the proposed algorithm in 50 and 100 nodes 

multicast networks. The CPLEX [12] is employed to have optimal solutions. The proposed 

Lagrangean heuristic shows good performance in every problem category of delay bound and 

degree constraints. The solution gap from the optimal solution is slightly higher in problems 

with lower delay bound and degree constraint. As shown in the table, the average solution gap 

from the optimal solution is 5% and 5.6% respectively in the 50 and 100 node problems. The 

CPU seconds are also compared as shown in the tables. The computational effort required by 

the proposed algorithm is dramatically reduced when compared to the exact solution procedure.  

The computational result is further investigated by examining the required number of MSNs, 
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due to the different values of delay bounds and degree constraints. Figure 5 shows that more 

MSNs are employed as the problem becomes more difficult. As the delay bound and degree 

constraint becomes tighter, the employed number of MSNs increases for the tree rearrangement. 

The increase seems to be more sensitive to the delay bound when the degree constraint is tight.  

Further experiments are performed to examine the cost sensitivity of the overlay tree 

rearrangement. Figure 6 shows the number of employed MSNs when different unit MSN cost is 

applieds. It is clear that more MSNs are employed as the number of rejoining multicast nodes 

increases. The increase of the required MSNs is also sensitive to the unit cost. Higher unit cost 

constraints the number of MSNs to cover the rejoin hosts. 

 

6. Conclusion 

To overcome node failures in overlay multicast networks, multicast tree rearrangement is 

considered by employing the multicast service nodes (MSNs). The service nodes generate new 

paths from a source to multicast members such that the end-to-end delay bound is satisfied. 

Since each multicast member is responsible for forwarding the packets in the overlay network, 

the degree constraint of a multicast node is also considered. 

The tree rearrangement problem is formulated as a binary integer linear program that 

minimizes the cost of MSNs and newly adopted links. Lagrangean relaxation based heuristic is 

developed to solve the problem. Some intractable constraints are relaxed and added into the 

objective as a penalty. Then the problem is decomposed into three subproblems that are easy to 

handle.  

Networks with 50 and 100 nodes are generated for computational experiments. In each 

network, four categories of problems are tested with different delay bounds and degree 

constraints. The average solution gap from the optimal solution is 5% and 5.6% respectively in 
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the 50 and 100 node problems. The computational time required by the proposed algorithm is 

dramatically reduced compared to the exact solution procedure. The required number of MSNs 

due to the different values of delay bound and degree constraint is also investigated. As the 

problem becomes tighter, the employed number of MSNs increases to recover the node failure. 

The increase is more sensitive to the delay bound when the degree constraint is tighter. The cost 

of MSN also affects the employment of the nodes.
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Problem 

Number 

(Delay bound, 

Degree constraint) 

Heuristic 

Solution 

(HS) 

CPU 

seconds 

Optimal 

value 

(OPT) 

Optimal 

CPU 

seconds 

GAP* 

1 (10,3) 132 3.5 125 55.9 0.056 

2 (10,3) 124 4.2 119 52.5 0.042 

3 (10,3) 139 4.5 131 65.7 0.061 

4 (10,3) 123 4.0 117 58.6 0.051 

5 (10,3) 113 3.4 108 58.1 0.046 

6 (10,8) 121 3.4 114 58.6 0.061 

7 (10,8) 120 4.2 115 50.9 0.043 

8 (10,8) 109 4.4 103 66.4 0.058 

9 (10,8) 122 4.0 114 60.4 0.070 

10 (10,8) 108 3.5 102 59.6 0.059 

11 (20,3) 119 3.6 113 56.3 0.053 

12 (20,3) 117 3.9 114 49.8 0.026 

13 (20,3) 105 4.5 101 64.1 0.040 

14 (20,3) 115 4.1 108 58.9 0.065 

15 (20,3) 105 3.6 101 57.6 0.040 

16 (20,8) 115 3.5 108 56.4 0.065 

17 (20,8) 106 3.7 103 50.8 0.029 

18 (20,8) 103 4.6 99 60.8 0.040 

19 (20,8) 112 4.1 107 60.6 0.047 

20 (20,8) 102 3.6 97 58.0 0.052 

*GAP = (HS-OPT)/OPT 
Table 1. Performance of the proposed heuristic with 50 nodes 
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Table 2. Performance of the proposed heuristic with 100 nodes 

Problem 

Number 

(Delay bound, 

Degree constraint) 

Heuristic

Solution

(HS) 

CPU 

seconds 

Optimal 

value 

(OPT) 

Optimal 

CPU 

seconds 

GAP* 

1 (15,5) 201 22.1 193 375.8 0.041 

2 (15,5) 195 21.8 182 388.0 0.071 

3 (15,5) 212 24.5 197 335.7 0.076 

4 (15,5) 208 23.7 199 344.0 0.045 

5 (15,5) 216 25.5 202 365.8 0.069 

6 (15,15) 187 22.3 174 428.6 0.075 

7 (15,15) 192 22.1 181 411.6 0.061 

8 (15,15) 194 25.5 181 353.4 0.072 

9 (15,15) 162 22.8 152 340.1 0.066 

10 (15,15) 193 26.5 184 388.4 0.049 

11 (25,5) 171 21.9 165 353.9 0.036 

12 (25,5) 188 22.0 179 391.9 0.050 

13 (25,5) 190 24.0 177 343.5 0.073 

14 (25,5) 161 23.9 151 345.7 0.066 

15 (25,5) 164 25.4 157 353.8 0.045 

16 (25,15) 169 22.0 160 365.0 0.056 

17 (25,15) 185 22.2 177 424.9 0.045 

18 (25,15) 171 24.3 165 344.7 0.036 

19 (25,15) 156 21.9 149 342.4 0.047 

20 (25,15) 161 26.3 155 376.3 0.039 

*GAP = (HS-OPT)/OPT 

 

 

 

 

 

 

 

 

 19



 

0

0.5

1

1.5

2

2.5

3

(Delay bound, Degree constraint)

T
h
e
 n

u
m

b
e
r 
o
f 
M

S
N
s

100 node problems

50 node problems

(10,3)

(10,8)

(20,3)
(20,8)

(15,5)

(15,15)

(25,5)

(25,15)

0

0.5

1

1.5

2

2.5

3

(Delay bound, Degree constraint)

T
h
e
 n

u
m

b
e
r 
o
f 
M

S
N
s

100 node problems

50 node problems

(10,3)

(10,8)

(20,3)
(20,8)

(15,5)

(15,15)

(25,5)

(25,15)

 

 

 

 

 

 

 

 

Figure 5. The number of MSNs employed for the tree rearrangement  
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