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Scope and Purpose: To cope with the increasing internet traffic, it is necessary to improve the 

performance of routers. To accelerate the switching from input ports to output in the router 

partitioning of ports and dynamic queueing are proposed. Input and output ports are partitioned 

into two groups A/B and a/b respectively. The matching for the packet switching is performed 

between group pairs (A, a) and (B, b) in parallel at one time slot and (A, b) and (B, a) at the next 

time slot. Dynamic queueing is proposed at each input port to reduce the packet delay and 

packet loss probability by employing the popup decision rule and applying it to each delay 

critical packet. 

 The partitioning of ports is illustrated to be highly effective in view of delay, required buffer 

size and throughput. The dynamic queueing also demonstrates good performance when the 

traffic volume is high.  
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Abstract: With the increase of internet protocol (IP) packets the performance of routers became 

an important issue in internetworking. In this paper we examine the matching algorithm in 

gigabit router which has input queue with virtual output queueing. Dynamic queue scheduling is 

also proposed to reduce the packet delay and packet loss probability. 

Port partitioning is employed to reduce the computational burden of the scheduler in a switch 

which matches the input and output ports for fast packet switching. Each port is divided into 

two groups such that the matching algorithm is implemented within each pair of groups in 

parallel. The matching is performed by exchanging the pair of groups at every time slot. Two 

algorithms, maximal weight matching by port partitioning (MPP) and modified maximal weight 

matching by port partitioning (MMPP) are presented. In dynamic queue scheduling, a popup 

decision rule for each delay critical packet is made to reduce both the delay of the delay critical 

packet and the loss probability of loss critical packet. 

Computational results show that MMPP has the lowest delay and requires the least buffer size. 

The throughput is illustrated to be linear to the packet arrival rate, which can be achieved under 

highly efficient matching algorithm. The dynamic queue scheduling is illustrated to be highly 

effective when the occupancy of the input buffer is relatively high. 
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1. Introduction 

 With the development of communication technology, the number of telecommunication users 

is growing rapidly especially in the web interface. As the number of Internet users grows 

exponentially these years, the so called 80/20 rule in LAN which means 80% internal traffic and 

20% external traffic is not appropriate any more. Thus the bottleneck problem in the router 

becomes severe with the increase of external traffic.  

Two approaches to solve bottleneck problem in the router have been proposed. One is “route 

once and switch many” and the other is “gigabit router”[9]. “Route once and switch many” is 

the way to minimize the frequency of routing. This approach needs new protocols and network 

components with high cost. IP switching of Ipsilon and Tag switching of Cisco [11] are the 

examples of this method. 

  An alternative approach to achieve routing at gigabit per second is to implement high speed 

layer-3 packet header processing with an internal switch fabric at a router. The processor’s 

internal cache is employed as a least recently used cache of IP destination addresses, and longest 

prefix matching algorithm is used to look up the routing table. The multi gigabit router is an 

example of this approach [2].  

It is known that the cost of “gigabit router” is less than that of “route once and switch many” 

due to the use of the existing network system. Thus we focus our attention in this paper to the 

“gigabit router” which has input queue with virtual output queueing at each port.  

To reduce the computational burden required in the matching process of input and output 

ports, port partitioning is suggested. Each port is partitioned into two groups and matching is 

accomplished within paired input and output port groups.  

Also, to improve delay and packet loss at the input buffers, dynamic queue scheduling is 

proposed by classifying the packets into two classes: delay critical and loss critical packets. The 

dynamic queue scheduling decides whether to pop up or not the delay critical packet to reduce 

the packet delay and loss. 
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This paper is organized as follows. Switching algorithm between input and output ports are 

examined in Section 2. Section 3 suggests an improved switching algorithm by port partitioning. 

In Section 4, dynamic queue scheduling is considered for mixed traffic streams of voice and 

data packets. The effectiveness of the proposed algorithm is demonstrated with computational 

experiments in Section 5. Finally, Section 6 concludes this paper. 

 

2. Matching Algorithms for Fast Packet Switching 

A basic structure of switch is shown in Figure 1. The switch fabric interconnects input and 

output ports at each time slot. The matching of each pair of input and output ports is scheduled 

by the scheduler and implemented by the switch fabric. 

At each input port, virtual output queueing (VOQ) [8] is assumed to overcome limitations of 

head of line (HOL) blocking as shown in Figure 2.  

  The HOL blocking can be entirely eliminated by using a simple buffering strategy at each 

input port as in Figure 2 (b). In VOQ, rather than maintaining a single first in first out (FIFO) 

queue for all packets (see Figure 2 (a)), each input maintains a separate queue for each output. It 
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is known that the throughput by VOQ is improved to 100% [3] compared the 58% [1] at an 

input queue switch with HOL blocking. 

Algorithms are developed to solve the matching problems. Maximum size matching 

algorithm [6] is proposed to find the match that maximizes the number of edges, where each 

edge represents a packet to be switched. Maximum weight matching algorithm [3] maximizes 

the sum of edge weights, where each packet has priority in delivery. Clearly, maximum size 

matching is a special case of the maximum weight matching. 

It was demonstrated using simulation that the maximum size matching algorithm is stable for 

independent and identically distributed arrivals up to offered load of 100% when the traffic is 

uniform [3]. However, the algorithm does not take into consideration the condition of each port, 

since each edge has same weight.  

On the other hand, in the maximum weight matching algorithm, the matching process is 

solved by considering the queue status of each port via the weight of each link. The most 

efficient algorithm for solving this maximum weight matching problem is known to converge in 

O(N3logN) running time [7] by assuming N input and N output ports. 

2

23

21

41

11

2

4

1

1

2

22

3

1

2

1

4

1

1

2

22

3

1

2

1

(a) (b) (c)

Figure 2. HOL Blocking (a), VOQ (b) and Switching (c) 



 6

 

Since the maximum weight matching algorithm is very complex to implement in a hardware, 

we are interested in an iterative approximation of maximum weight matching, i.e., the iterative 

Maximal Weight Matching (i-MWM) algorithm [2]. N input and N output arbiters operate in 

parallel as in parallel iterative matching, which was developed by DEC Systems Research 

Center for the 16-port, 1 Gbps AN2 switch [8]. At each time slot, the matching for the next time 

slot is scheduled as follows. Note that each iteration of i-MWM consists of three steps: request, 

grant and accept. All inputs and ouputs are initially unmatched. At the end of each iteration, 

only those inputs and outputs not matched are eligible for matching in the following iterations. 

Connections made in one iteration are never removed by a later iteration, even if a larger weight 

match would result. The three steps of each iteration are as follows: 

Step 1. Request: each unmatched input sends a request word to each output for which it has 
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Figure 3. Implementation of Arbiters in Scheduler
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weight.  

Step 2. Grant: if an unmatched output receives any requests, it chooses the request with largest 

weight. Ties are broken arbitrarily.  

Step 3. Accept: if an unmatched input receives one or more grants, it accepts the grant with 

largest weight. Ties are broken arbitrarily.  

The implementation of i-MWM in scheduler is shown in Figure 3. 

 

3. Iterative Maximal Weight Matching by Port Partitioning  

 In i-MWM, the number of comparisons required at each arbiter becomes N-1 in one iteration 

in the worst case. This is true at both grant and accept arbiters. However, by dividing the ports 

into two groups, the number of operations at each arbiter becomes half. Thus, we consider 

partitioning the input and output ports into two groups such that the computational burden 

required in the process of request, grant and accept is reduced and the matching process is 

accomplished before transmission. An example of port partitioning is shown in Figure 4. As 

shown in the figure, the paired input and output port groups considered at one time slot is 

exchanged at the succeeding time slot. The matching is performed within the two paired groups 

in parallel. As an example in Figure 4, input ports 1, 2, 3 and 4 and output ports 1, 2, 3 and 4 are 

paired at one time slot. At the next time slot, input ports 1, 2, 3 and 4 and output ports 5, 6, 7 

and 8 are paired. Thus traffic only between each pair of groups are considered for matching as 

indicated in the figure. The dashed lines after one time slot in Figure 4 represents the traffics not 

matched at the previous time slot. The matching process of port partitioning is explained in the 

following Algorithm MPP.  

 

Algorithm MPP 

Step 1.  Let G_0 = {grant arbiter i | 1≤ i ≤ N/2 }, *N: total number of input or output ports 

 G_1 = { grant arbiter i | N/2 + 1 ≤ i ≤ N }, 
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Figure 4. An Example of Port Partitioning 

 I_0 = { input port i | 1≤ i ≤ N/2 }, 

 and I_1 = { input port i | N/2 + 1 ≤ i ≤ N }. 

Step 2.  time = current timeslot; 

Step 3.  Each unmatched input sends its weight information to grant arbiters in parallel. 

Step 4. Each grant arbiter in G_0 selects one input port to have max weight in I_(time%2), and 

each grant arbiter in G_1 selects one input port to have max weight in I_(1-(time%2)).    

*If time is even number, time%2 is 0 and if time is odd number, time%2 is 1. 

Step 5.  Each grant arbiter sends the selected input index to the respective accept arbiter. 

Step 6.  Each accept arbiter selects one output to have max weight. 

Step 7.  If no matching exists, goto Step 9. 

Step 8.  goto Step 3. 

Step 9.  time ++; each input transmits the matched traffic. 
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In Figure 4, notice that the packet from input port 4 to output port 6 is delayed one time slot 

due to the unpaired grouping. In this case, by including such a packet into the matching as in 

Figure 5, we can improve the efficiency of the switch. It will not only reduce the delay of 

packets but also increase the throughput by giving the chance to accept packets at the 

corresponding two ports (input port 4 and output port 6 in this example) in the very next time 

slot. 

By considering such a case, we present a Modified Matching by Port Partitioning (MMPP) as 

follows. 

 

Algorithm MMPP 

Step 1.  time = current time slot;  

Step 2.  Let G_0 = {grant arbiter i | 1≤ i ≤ N/2 }, *N: total number of ports 

 G_1 = { grant arbiter i | N/2 + 1 ≤ i ≤ N }, 
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 I_0 = { input port i | 1≤ i ≤ N/2 }, 

 and I_1 = { input port i | N/2 + 1 ≤ i ≤ N }. 

Step 3.  Each input sends its weight information to grant arbiters in parallel. 

Step 4.  For all G_0, if grant arbiter k didn’t receive any signal from I_(time%2), 

  G_0 = G_0 \ {k} and G_1 = G_1 ∪ {k}. 

 Also, for all G_1, if grant arbiter k didn’t receive any signal from I_(1-(time%2)), 

  G_1 = G_1 \ {k} and G_0 = G_0 ∪ {k}. 

Step 5. Each grant arbiter in G_0 selects one input port to have max weight in I_(time%2), and 

each grant arbiter in G_1 selects one input port to have max weight in I_(1-(time%2)).    

*If time is even number, time%2 is 0 and if time is odd number, time%2 is 1. 

Step 6.  Each grant arbiter sends the selected input index to the respective accept arbiter. 

Step 7.  Each accept arbiter selects one output to have max weight. 

Step 8.  If no matching exists, goto Step 10 

Step 9.  goto Step 2. 

Step 10.  time ++; each input transmits the matched traffic.  

 

 Finally in this section, we compare the computational complexity of the two algorithms: i-

MWM and MPP. The complexity of the MMPP is expected to follow MPP in the worst case. 

Note that the number of matched ports at each time slot is dependent on the number of iterations 

of the two algorithms. Also, at each iteration the number of operations is determined by the 

worst case port since the request, grant and accept process is performed in parallel at each port. 

If we assume that there is packet flow from every input to every output port, then a grant arbiter 

needs to select one of the N requests. In this case, the number of comparison operation required 

is N-1, to select the maximum weight among N candidates. In the worst case, all grant arbiters 

may select the same input request. As a result, the corresponding accept arbiter performs N-1 

comparisons.  This is the first iteration of the algorithm.  At the first iteration, the number of  
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Algorithm i-MWM Algorithm MPP Iteration 

# of operations at 

each iteration 

Cumulative # of 

operations 

# of operations at 

each iteration 

Cumulative # 

of operations 

1 2(N-1) 2N-2 N-2 N-2 

2 2(N-2) 4N-6 N-4 2N-6 

3 2(N-3) 6N-12 N-6 3N-12 

4 2(N-4) 8N-20 N-8 4N-20 

N/2-1 N+2 3N(N-2)/4 2 N(N-2)/4 

N/2 N N(3N-2)/4 0 N(N-2)/4 

N-1 2 N(N-1)   

N 0 N(N-1)   

operations becomes 2(N-1). However, when the number of ports is N/2 as in the port 

partitioning algorithm, the number of operations is reduced to N-2.  

 At the second iteration, by assuming one pair of input and output ports is matched, the number 

of operations in i-MWM becomes 2(N-2). In case of MPP, the number of operations is N-4. 

Thus the total number of operations during the two iterations becomes 4N-6 in i-MWM, and 

2N-6 in MPP. Table 1 shows the worst case computational complexity of the two algorithms. 

When we compare the cumulative number of operations, the proposed Algorithm MPP requires 

approximately between 1/4 and 1/2 as many computations as the Algorithm i-MWM depending 

on the required number of iterations in the matching. 

  

 4. Dynamic Queue Scheduling  

 

  In this section, we consider queue scheduling in each input buffer to provide the flexibility for 

Table 1. Worst Case Computational Complexity of the Two Algorithms 
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integration of mixed traffic streams, such as voice, data, and video. Since the primary benefit of 

fast packet switching lies in its flexibility to serve different traffic streams, scheduling in queues 

is necessary for reliable transmission of packets. Scheduling algorithms for a single priority 

class may not perform well when applied to two priority classes scheduling. The first class 

encompasses packets requiring low loss probability and the other class requiring very low delay. 

An example of the latter is voice and video traffic, while an example of the first is data traffic. 

We denote the traffic requiring low loss probability as loss critical (LC) traffic and that requiring 

very low delay as delay critical (DC) traffic. 

 Several scheduling schemes [4,5,10] are proposed to support two priority classes of packets. 

Pao and Lam [4] propose a cell scheduling scheme for an input and output queued ATM switch. 

The input buffer is physically divided into two parts, one for DC cells and the other for LC cells. 

In transmission from input buffer to output buffer, DC has the priority over LC. LC can be 

transmitted only when there is no DC to the same output destination. A scheduling scheme for 

output queued switch is presented by Alnuweiri et. al. [5]. In the method an incoming DC or LC 

packet is immediately forwarded to its output buffer provided that the buffer is not full. If the 

buffer is full, DC is discarded and the LC is forwarded to a logical memory in the scheduler 

associated with the output buffer. At each succeeding time slot the memory attempts to forward 

the LC to its associated output buffer.  

 We consider in this study scheduling of an input queued switch with VOQ. We propose 

dynamic queue scheduling to take into account the changing ratio of different traffic streams, in 

which the popup of DC packet is decided by comparing the delay and the loss probability.  

In an input buffer, LC packets get storage priority over DC packets and DC packets get delay 

priority over LC packets. When the input buffer is saturated, new LC packets are allowed to 

replace stored DC packets, but they cannot replace other LC packets. In this method, the 

blocking probability of LC packets is decreased. To schedule packets in a queue we define the 

following two terms:  
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LC-replace: When a LC packet just arrived finds the input buffer is full and the last packet 

in its VOQ is a DC packet, then the LC replaces the last DC packet. 

DC-popup: When a DC packet arrives at its VOQ, the packet is popped up to the earliest LC 

packet in the queue that does not precede a DC packet. We call the earliest LC 

packet LC_HOL. 

 Figure 6 and 7 show the process of DC-popup and LC-replace respectively. 

 When a DC or LC packet arrives at an input buffer, the input buffer decides how to store the 

packet at each VOQ. At this point, the following two queue scheduling methods can be 

considered. The first is FIFO (First In First Out) with LC-replace in which packets are queued in 

the order of arrival and the LC-replace is applied. The second is DC-priority queue scheduling 

in which both LC-replace and DC-popup are applied.  

It is clear that the FIFO with LC-replace decreases the blocking probability of LC packets, 

and the DC-priority queue scheduling decreases the delay of DC packets. Thus the effectiveness 

of the two schemes depends on the portion of DC and LC packets. Clearly, FIFO with LC-

Figure 6. The process of DC-popup 
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(a) Input queue state before DC-popup (b) Input queue state after DC-popup
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Figure 7. The process of LC-replace 
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replace is effective as the portion of LC packet increases, while the DC-priority queue 

scheduling is as the portion of DC packet increases. We are thus interested in a dynamic queue 

scheduling which adopts either FIFO with LC-replace or the DC-priority queue scheduling 

depending on occupancy of the buffer. Note that the DC-priority queue is different from FIFO in 

that it applies DC-popup. Therefore, in the dynamic queue scheduling we need to decide when 

to apply or not to apply the DC-popup. 

When a DC packet is popped up, the gain is the decreased delay of the DC packet when a 

VOQ is not full. However, when a VOQ is full with the DC packet located at the last, the popup 

results in the gain as well as the loss. The loss is the lost chance of LC-replace for the following 

LC packet. This occurs when the VOQ has the packets as in Figure 6 (a). In Figure 6 (a) when 

the last DC packet is popped up, the delay of the DC packet is decreased while the chance of 

LC-replace by the newly arriving LC packet becomes zero. 

To compare the gain and loss and to decide whether to apply DC-popup or not when a VOQ 

is full with the DC packet located at the last, we compare the ratio of the reduced time delay of 

the DC packet and that of the reduced probability of LC-replace when the DC-popup is applied. 

Let n be the number of packets in the VOQ and m be the number of packets that precede the 

LC_HOL in the VOQ. We assume the expected service time of each head of line packet is E(s). 

Suppose that a DC packet is arrived, then the expected delay of the DC packet is (n+1)E(s). 

When popup is applied to the DC packet, the expected delay becomes (m+1)E(s). Thus the 

popup gain is the decreased delay of (n-m)E(s). In other words, when DC packet is popped up, 

the delay is decreased by (n-m)E(s) and the ratio of time delay of the DC packet by applying the 

popup becomes (n-m)/(n+1). 

Now, we consider the reduced probability of LC-replace after the DC-popup. Clearly, the 

chance of LC-replace is never lost, if a VOQ is not full. This is because the LC-replace occurs 

only when the input buffer is full. Thus, DC-popup results in reduced time delay when the VOQ 

is not full.  
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However, when the VOQ is full with the DC packet located at the last, two cases follow: 

 1. The second last packet is DC. 

 2. The second last packet is LC. 

In the first case, the DC-popup cannot occur, since a DC cannot pass another DC in the queue. 

In the second case, the probability of LC-replace is equal to one before applying the popup (see 

Figure 6 (a)) and that of LC-replace is zero after the popup (see Figure 6 (b)). Thus the ratio of 

the reduced probability of LC-replace becomes one. Here, note that the popup of a DC packet 

can be applied when the gain is greater than the loss, i.e.,  

    (n – m) / (n + 1) > 1, if the last packet in the VOQ is a LC packet after popup. 

However, the above case is not possible since (n-m) / (n+1) < 1. Therefore, applying popup of a 

DC packet when the VOQ is full is not recommended.  

 Based on the above analysis we propose the following Dynamic queue scheduling: 

   1. Apply FIFO with LC-replace. 

   2. Apply DC-popup at any VOQ which is not full. 

   3. Do not apply DC-popup when the VOQ is full with DC packet located at the last.  

The performance of the proposed dynamic queue scheduling is examined by comparing with the 

FIFO with LC replace and the DC-priority queue scheduling in Section 5. 

 

 5. Computational Results 

 In order to simulate scheduling algorithm, we assume Bernoulli traffic; the probability of 

traffic occurrence is p, 0 ≤ p ≤ 1, at each input at every time slot. Each packet is assumed to have 

uniform switching to all output ports. We also assume that one time slot is one packet 

transmission time. The packet size is assumed fixed. The input queue switch is assumed to have 

32 input and 32 output ports. The input queue switch adopts VOQ. Each algorithm is 

implemented for 500,000 time slots. The weight is determined base on the occupancy of the 

queue such that the port with longest queue has the priority to be matched.  
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 Packet delay, buffer size and throughput are examined at various packet arrival rates, which are 

measured by the number of packets arrived per time slot. Delay is measured by the number of 

time slots during which a packet is in the queue and the unit of buffer size is the number of 

packets. Throughput represents the average number of transmitted packets over 32 input ports at 

one time slot. 

 Figure 8 and 9 show the average delay of three algorithms: i-MWM, MPP, MMPP. Note that  

the number of computational operations by Algorithm MPP and MMPP is approximately half of 

that by Algorithm i-MWM when the required number of iterations in the matching is relatively 

small. Thus, for fair comparison, the number of iterations by the two proposed algorithms is 

made twice of that by the i-MWM. At low packet arrival rate, i-MWM and MMPP have slightly 

lower delay than MPP. However, at high packet arrival rates, MMPP has the lowest delay 

compared to two other methods. Clearly, the packet delay is reduced by an increased number of 

iterations.  

  In Figure 10 and 11, the required maximum input buffer size is presented. From Figure 11 

approximately 20-60 packets are buffered by Algorithm MMPP when the packet arrival rate 

exceeds 0.9. However, the buffer size is exponentially increased with i-MWM at high packet 

arrival rate. From Figure 12 and 13 it is clear that the throughput is almost linear to the packet 

arrival rate with the two proposed methods, which can be obtained under highly efficient 

matching algorithms.  

  Now, to test the performance of dynamic queue scheduling proposed in Section 4, delay of 

packets and loss probability of LC packets are examined. Note that the LC packet loss occurs 

when the buffer is saturated. Since the VOQs are virtual and they are operated as one queue in 

reality, we implement the dynamic queue scheduling with three versions: Dynamic-90, 

Dynamic-95 and Dynamic-97. In the three versions, the popup of DC packet is applied 

according to the rule in Section 4. The VOQs are considered full when 90%, 95% and 97% of 

the buffer is filled respectively in the three versions. Algorithm MMPP is implemented with six 
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iterations per time slot. Buffer size and packet arrival rate are fixed to 50 and 0.98 (heavy 

traffic) respectively. Three input queue scheduling methods are compared: FIFO, DC-priority 

queue scheduling and dynamic queue scheduling. 

Figure 14 shows the average delay of DC packets. At high packet arrival rate, the delay by 

Dynamic-95 and Dynamic-97 slightly exceeds the DC-priority queue in which every DC packet 

is popped up to reduce the delay. The loss probability of LC packets is shown in Figure 15. 

Clearly, the proposed methods are competitive to the FIFO which shows the least loss 

probability.  

 The performance of Figure 14 and 15 is summarized with the normalized utility to compare 

three queue scheduling methods in Figure 16. Note that the utility of loss probability by FIFO is 

set to one and that by DC-priority is set to zero. Also, the utility of delay by FIFO is set to zero 

and that by DC-priority is set to one. The two utilities are then normalized with the proportion 

of DC and LC packets. Figure 16 shows the normalized utility of three queue scheduling 

methods. As shown in the figure, the normalized utility by FIFO is decreased as the ratio of DC 

packet increases. The utility by DC-priority is decreased with the increase of LC packets. 

However, the utility of the dynamic queue scheduling is the highest and not sensitive to the ratio 

of the two packets. Above 84% utility is demonstrated by the Dynamic-95 and Dynamic-97 

without regard to the ratio of DC and LC packets. 

Figure 8. Average Packet Delay with 4 iterations of MMPP 
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Figure 9. Average Packet Delay with 6 iterations of MMPP 
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Figure 10. Input Buffer Size with 4 iterations of MMPP  
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Figure 11. Input Buffer Size with 6 iterations of MMPP  
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Figure 12. Throughput with 4 iterations of MMPP  
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Figure 14. Delay of DC Packets 
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6. Conclusion 
 

In this paper, we have proposed input and output matching algorithms by port partitioning in 

a gigabit router which has input queue with virtual output queueing. 

 Two iterative maximal weight matching MPP and MMPP are proposed by partitioning input 

and output ports into two groups. The matching process is accomplished within each pair of 

input-output groups in parallel. The input-output pair is exchanged at each time slot. In MMPP, 

matching input-output ports that are not in the same pair of groups is allowed, when each of the 

ports is idle in its current pair. The effectiveness of port partitioning is illustrated by 

computational results. A better performance is obtained when the packet arrival rate is relatively 

Figure 15. Loss Probability of LC Packets 

Figure 16. Normalized Utility of Three Queueing Methods 
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high. MMPP demonstrated the best performance in delay, required buffer size and throughput.  

 In dynamic queue scheduling packets are divided into two classes: loss critical packet and 

delay critical packet. A popup decision rule of the delay critical packet is suggested to improve 

the delay of DC packets and to reduce the loss probability of LC packets under heavy traffic 

environment. The suggested dynamic queueing outperforms the FIFO and DC-priority queue 

scheduling in view of a combined utility of delay and loss.  

 

Reference 

 

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input versus Output Queueing on A Space Division 

Switch,” IEEE Trans. Communications, 35(12), 1987, pp. 1347-1356. 

[2] N. McKeown, “Scheduling Algorithms for Input-Queued Cell Switches,” phD Thesis. 

University of California at Berkeley, 1995. 

[3] N. McKeown, V. Anatharam and J. Walrand, “Achieving 100% Throughput in an Input-

Queued Switch,” Proc. INFOCOMM ’96. 

[4] D. C. W. Pao and S. P. Lam, “Cell Scheduling for ATM Switch with Two Priority Classes,” 

IEEE ATM Workshop Proceeding, 1998, pp. 86-90. 

[5] H. M. Alnuweiri, Y. He and M. Ito, “Multipriority Packet Switchin on the HYPER Switch,” 

IEEE ATM Workshop Proceeding, 1998, pp. 34-42. 

[6] J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matching in Bipartite 

Graphs,” Society for Industrial and Applied Mathematics I. Comput., 2, 1973, pp. 225-231. 

[7] R.E. Tarjan, “Data Structures and Network Algorithms,” Society for Industrial and Applied 

Mathematics, Pennsyvania, Nov 1983. 

[8] T. Anderson and S. Owicki, J. Saxe, “High Speed Switch Scheduling for Local Area 

Networks,” ACM Trans. on Computer Systems, Nov. 1993, pp. 319-352.  

[9] ETRI, “A study on gigabit ethernet interface technology,” Dec. 1997. 



 22

[10] H. Ohnishi, T. Okada and K. H. Noguchi, “Flow Control Schemes and Delay/Loss Tradeoff   

in ATM Networks,” IEEE J. Select. Areas Commun. , vol 6, Dec. 1988, pp. 1609-1616. 

[11] B. Davie, P. Doolan and Y. Rekhter, “Switching in IP Network,” Morgan Kaufman 

Publisher Inc.  

 


