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Abstract 

With rapid advances of computing technologies and high speed networks, various high volume 

multimedia services have become popular in the Internet. Private Internet broadcasting is a typical 

way to support these services and overlay multicast technology is known to be a promising solution to 

support this method. In an overlay multicast network, members are dynamically joining or leaving 

their multicast group. To reduce frequent updates of multicast members and provide a reliable 

multicast route, overlay multicast trees are investigated. The problem is formulated as a binary integer 

programming which maximizes the minimum link reliability for all multicast sessions. Tabu search 

heuristic is developed with repeated intensification and diversification. Robust computational result is 

obtained that is comparable to the optimal solution and applicable in real time. 
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1. Introduction 

Various high volume multimedia services such as electronic newspapers, video-conferencing, 

video-on-demand (VOD) and cyber education have become popular with rapid advances of computing 

technologies and high speed networks. These multimedia contents are transmitted over the Internet 

either in download mode or in streaming mode (i.e., video streaming and audio streaming) [1]. In the 

download mode, a service user can download the whole multimedia file and then play back the file in 

his computer. Streaming mode is necessary for Internet broadcasting, since video contents need not be 

downloaded in full and is being played out while parts of the file are received. We in this paper are 

interested in video streaming service for private Internet broadcasting [2, 3, 4]. 

For multimedia services, broadcasting is gradually magnified by contents suppliers, service 

providers and receivers. If users have basic computer equipments such as image camera, multimedia 

software and sound card, they can provide live Internet broadcasting. This private Internet 

broadcasting [2] is different from commercial one in that its service time period is restricted. A typical 

example of private Internet broadcasting is SHOUTcast [5] where a distributed streaming audio 

service is provided. 

For private Internet broadcast, multicast transmission technology has been suggested which has 

network bandwidth efficiency [6]. Differently from unicast, multicast permits a source to get away 

with transmitting only single stream, regardless of how many receivers exist in its multicast group. 

One stream of video is sent to a multicast router and the router sends the packet to one segment of the 

network on which there is a receiver. Traditional IP multicast which runs at network layer is not 

widely deployed because of technical and economical reasons [7, 8]. Difficulty of inter-domain 

communications, scalability problem and additional software requirements on routers hindered the 

deployment of IP multicast. Overlay multicast is an emerging technology appearing as a break-through 

to solve these problems. Overlay multicast, which runs at the transport layer, is a scalable unicast-

based multicast technique among group members. Since overlay multicast resides on top of densely 

connected IP network, it can be easily deployed by effectively reducing complexity of network routers. 

One important issue in overlay multicast is to build a multicast tree, where video streams are 
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transmitted from a source node to its members through the path. Algorithms suggested for overlay 

multicast tree construction are classified into two branches [9]: Centralized and distributed algorithms. 

Centralized algorithms assume that all multicast members know the network information. Distributed 

algorithms, on the other hand, assume that a member node knows only partial information of adjacent 

nodes and links. Typical examples of the centralized algorithm are ALMI [10] and Host-Based 

Multicast (HBM) [11]. ALMI is designed for a large number of groups, each with a small number of 

members. The objective of ALMI is to minimize the cost of multicast trees where the cost of each link 

is the round-trip delay. HBM is proposed to fast recover network failures, when multicast members 

fail to forward packets. 

Decentralized algorithms are divided into tree-first and mesh-first approaches. In the tree-first 

approach, a multicast tree can easily be reconstructed when a new node arrives or an existing node 

fails. In the mesh-first approach, all multicast members maintain a connected mesh topology and 

multicast tree is built up on top of it. The tree-first approach includes YOID [12], Overcast [13] and 

NICE [14] and the mesh-first includes Narada [15] and Scattercast [16]. YOID intends to improve 

delay and data loss rate in the situation where a tree changes dynamically. Overcast is designed for 

scalable and reliable single-source multicast trees under changing network conditions. NICE intends to 

produce a number of different trees to improve quality of data streams. The aim of Narada and 

Scattercast is to minimize the delay from a multicast source to each multicast member. 

In this paper, we are interested in designing reliable overlay multicast trees with multiple sessions. 

These multiple sessions are serviced by single source. A typical example of the multiple sessions is 

lecture webcasting [17]. In the webcasting, one video streaming shows the speaker and a second 

streaming shows the presentation material. Each session of video streaming service has a group of 

members whose join and leave actions are centrally controlled by the source. Our objective is to build 

a reliable multicast tree for each session that satisfies some common constraints of an overlay network, 

which includes the end-to-end delay bound. 

The rest of this paper is structured as follows. In Section 2, we discuss overlay multicast for 

private Internet broadcasting, where restrictions in the design of overlay multicast trees are examined. 
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Section 3 presents formulation of reliable overlay multicast trees with multiple sessions. Tabu search 

heuristic is developed to solve the problem in Section 4. Construction of initial solutions and 

intensification and diversification processes are examined. Computational results and conclusion are 

provided in Section 5 and 6 respectively. 

 

2. Overlay Multicast for Private Internet Broadcasting 

Multimedia streaming services are now at the beginning of operation over the Internet. 

Commercial streaming networks such as Akamai Technologies [18] and Real Network [19] have 

deployed large-scale live streaming infrastructures. 

As shown in Figure 1, a source of Internet broadcasting produces live audio or video streaming to 

provide service to a group of receivers. Due to high bandwidth requirement of video streaming, it is 

unusual to transmit raw video streaming over current Internet environment. Thus, encoders are used to 

compress raw streaming data before transmitting them to receivers. A receiver decodes audio and 

video streaming and enjoys broadcasting services. The receiver also sends its statistical file to the 

source to inform the time of joining or leaving the service, service rate and other user request. 
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Figure 1. Overview of private Internet broadcasting system 
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Table 1. A log file format for streaming service 

Field name Description 

remote_host IP address or Domain Name System (DNS) hostname 

auth_user Name of authenticated user 

Time Time of joining or leaving the service 

Event User request, i.e., command name and targeted service class name 

service_rate record of the service rate per second 

 

In order for the source to provide a service, a log file [20, 21] is essential to analyze the 

characteristic of each subscriber. Since the log file in [20, 21] is designed for web page service, it may 

not be suitable for streaming service. Thus, a modified log format is necessary. It must include 

information of log-in, log-out, and service rate of each member in each session. A suitable log file 

format for streaming service is recommended as in Table 1. The file includes remote_host, auth_ user, 

time, event and service_rate. Selection between IP address and DNS hostname for remote_host is 

decided by the overlay multicast administration. Time of joining or leaving the service is recorded in 

the field of time with the format of [dd/mm/yyyy:hh:mm:ss]. Thus, accumulated log file can be used 

as a database for each user. 

Now, in overlay multicast, all members including multicast source are connected in application 

layer. Therefore, member nodes can communicate each other without additional function of routers. 

Figure 2 shows difference between IP and overlay multicasts. In IP multicast, source node first 

transmits packets to an adjacent router. The router then copies the data and sends them to other routers 

and receivers. However, in overlay multicast, the source node transmits packets to adjacent receivers. 

Receivers then forward them to other receivers. In this way receivers successively forward packets to 

other members without the aid of routers. IP multicast thus generates unnecessarily many data flows 

compared to the overlay multicast. Figure 2 (c) shows logical links in overlay multicast tree without 

underlying physical network. Each link in overlay multicast tree represents an independent unicast 

session. 
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Figure 2. IP and Overlay Multicasts 

 

In overlay multicast tree, each member node receives a data flow and forwards it to one or more 

successive members. Since each member node has different CPU power and storage size, different 

performance may result depending on the capacity limit of a member. Thus, we need to consider 

degree constraint which counts the maximum number of unicast data flows a node can transmit. The 

average node degree which is mainly dependent on the computing power and buffer size is between 

three and four [22]. 

Another issue in designing an overlay multicast tree is the link capacity. A logical link in the tree 

can traverse one or more physical links in the Internet. It is generally assumed that the shortest 

physical routing path between member nodes is selected for a logical link. Thus, the link capacity is 

restricted by the minimum capacity of physical links in the path. When multiple sessions are routed in 

a logical link, the link capacity is critical in designing trees for those sessions. 

In designing an overlay multicast tree, we finally need to consider the joining or leaving of group 

members. When a member node joins or leaves a multicast session, it needs to be connected into or 

disconnected from its tree. Connection of a member to a corresponding multicast session tree can be 

performed by periodically updating the tree. However, updating procedure is not simple when a node 

leaves a session. If a member leaves a multicast session, all descendant nodes of the member are 

disconnected. Therefore, we need to design a reliable multicast tree for each session such that the 
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multicast tree is sustainable during the session without frequent updates. 

 

3. Overlay Multicast Trees for Multiple Sessions 

An overlay multicast network can be modeled with a directed graph ),,( EVG =  where V  and 

E  represents a set of overlay nodes and links respectively. Given the graph  we consider ,G K  

multicast sessions such that each session  has a set of multicast members, represented as  

where  All sessions are assumed to have same source  That is, single source 

provides multiple streaming services in the overlay network. We are interested in constructing an 

overlay multicast tree for each session that satisfies constraints in the network. For traditional IP 

multicast routing, Oliveira and Pardalos [23] provide diverse applications of combinatorial 

optimization. 

k ,kS

,VSk ⊂ .,...,1 Kk = .s

For a multicast member node , a path is required to connect node  to multicast source 

 Let  be a binary variable for link  in multicast session  If there is a direct link from 

node  to  in multicast session   Otherwise,  Also, let  be a binary 

variable to represent a path between the source and multicast member  of session   if 

there is a direct link from node i  to  on the path. Otherwise,  Then the following 

relationships hold for flow conservation [24]. 
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For a link  to be inserted in the path from the source to node  of multicast tree , the 

link has to be selected for the session as in the constraint below. 

),( ji m k

,kij
k
ijm xy ≤     kSmjiandEjikallfor ∈∈ ,,   ),( ,   

Since a multicast tree for session  is a spanning tree with  members, we have k kn

,1−=∑ k
k
ij nx

),( ∈Eji
  kSjiandkallfor ∈,     

Now, each member node in the overlay network has capacity limit represented by degree constraint. 
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Let  be the degree constraint of node  then we have iD ,i
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To satisfy the end-to-end delay bound for members of session  the following constraint is 

necessary 
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where  is the delay in link  and  is the delay bound of session  If d  for all 

  becomes the end-to-end hop counts in session  
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In an overlay network with two or more sessions, trees may traverse the same link. These multiple 

sessions have to satisfy the link capacity. Let  be the service data rate of session  and C  be 

the capacity of link  Then link capacity constraint becomes 

kr k ij
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Now, our objective is to have reliable overlay multicast trees that satisfy all constraints discussed 

above. Here, we assume each node has a sojourn probability that resides in its multicast group during a 

fixed period of time. After the interval, each multicast session tree is updated with join and leave 

information of members. If the sojourn probability is high, it is more desirable for other descendant 

members to be connected to the node. This is because descendant nodes connected to a node with 

higher sojourn probability may be serviced more reliably during the period. Let  be the sojourn 

probability of node  in session  To represent the link reliability, we adopt a logarithmic function 

which is usually employed for various utilities. In this study, by applying weight  to each session, 

the link reliability of session  is represented as  Note that the link reliability is 

distinct for each session due to the sojourn probabilities  

k
ip

kw

i .k

k .log k
j

k
i

k pMpw

.kip M  is employed to prevent the negative 

link reliability. When two nodes are not connected, the link reliability is given by  By 

assuming 

.logMwk

M  is as large as desired, the link reliability is consistent to our objective which maximizes 

the minimum link reliability in all sessions. Thus, the objective function is given by 
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According to the above discussion, the design of reliable overlay multicast trees can be formulated 

as the following binary integer programming problem. 
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Note that the well-known degree constrained or delay constrained spanning tree problem which is 

a special case of above binary integer programming is NP-complete [25]. This implies that any known 

exact algorithm will run in time exponential in the size of problem instance. Such an algorithm is thus 

in most cases unusable for real-world size problems. As encouraging results on NP-complete problems, 

we investigate a tabu search heuristic to have reliable overlay multicast trees. The tabu search to 
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rearrange the multicast trees will efficiently handle members joining and leaving their multicast groups. 

 

4. Tabu Search 

Tabu search [26, 27] is a meta-heuristic procedure for solving optimization problems. It is 

designed to guide other methods to overcome the trap of local optimality. The main concepts of tabu 

search includes: 1) tabu lists and tabu list size, 2) tabu restrictions and aspiration criteria and 3) 

intensification and diversification strategies. In this study the following three steps are considered to 

obtain the reliable overlay multicast trees as shown in Figure 3. 

1) Initial solution (Initial Overlay Multicast Trees) 

2) Intensification with a Short-Term Memory 

3) Diversification with a Long-Term Memory 

The role of a short-term memory is to prohibit moves from recently visited solutions in the 

intensification process. Recently visited solutions are stored in a tabu list and forbidden to cycle. Since 

the short-term memory may fail to discover good solutions, a long-term memory is introduced. The 

long-term memory is to diversify the search space by finding a new solution. Thus, diversification 

guarantees a global solution while intensification strategies provide an elite solution in a restricted 

search space. 

 

4.1 Initial Overlay Multicast Trees 

As an initial solution for the overlay multicast tree, we need a spanning tree for each session that 

satisfies node degree, link capacity and delay bound. To obtain an initial overlay multicast tree, two 

strategies are considered; “Reliable Initial Tree” and “Random Initial Tree”. For the reliable initial tree, 

links are sequenced in nonincreasing order of reliability in each session. Then, a spanning tree is built 

by selecting links in the order of reliability. Since the node degree and link capacity are commonly 

enjoyed by all sessions, links that satisfy two constraints are selected by each session. A tree 

constructed by the procedure above may not satisfy delay bound. To have a feasible solution, a node in 

each session that does not satisfy the delay bound is selected. The node and its descendants are 
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reconnected to an ascendant node of the tree which satisfies the delay bound with higher link 

reliability. The reconnection process is continued until all descendant nodes satisfy the delay bound. 

Random initial tree is built by randomly selecting links that satisfy node degrees and link capacities. 

To have a feasible solution, a node that does not satisfy the delay bound is reconnected to an ascendant 

node of the tree. This reconnection process is continued until all nodes satisfy the delay bound. 

 

4.2 Intensification with Short-Term Memory 

Since we have an initial feasible tree for each overlay multicast session, we are now interested in 

improving the solution by applying tabu search. To have more reliable multicast trees, link swap and 

link reconnection moves are considered. 

In the link swap move, the link with lowest reliability in all sessions is selected as the target link. 

To increase the reliability of the tree target link  is exchanged with the highest reliable link 

 that satisfies  and  for links with  and  Thus, swap 

move which results in  and (  as in Figure 4 guarantees improved minimum reliability. 
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k
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Link reconnection is simply to connect the node with lower sojourn probability of the target link to 

other node that best improves the link reliability. Figure 5 shows link reconnection process. Node j  

with lower sojourn probability of target link  is reconnected to other node  which has higher 

sojourn probability in link  

),( ji i′

).,( ji ′′

Intensification procedure is based on a short-term memory which systematically controls the tabu 

list. After applying the link swap or link reconnection move, the node with lower sojourn probability 

of the target link is added to the tabu list with its session. Nodes added into the tabu list are forbidden 

for a certain period to be reselected as a target node. After each move, frequency count of the newly 

added link is increased by one, which is a valuable information for diversification. Intensification 

process is continued until no solution improvement is obtained consecutively for N_max iterations. 
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Figure 3. Proposed tabu search procedure 
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Figure 5. Link reconnection move 

 

4.3 Diversification with Long-Term Memory 

The purpose of diversification with a long-term memory is to drive the search into new solution 

regions escaping from local optimality. It is initiated when no solution improvement is obtained during 

N_max iterations of the intensification process. To restart the tabu search in new solution region, 

historical link frequency information is employed. The frequency count of a link represents how often 

the link is considered as a solution in previous pass of tabu search. Now, to restart the tabu search, it is 

promising to have an initial tree with links that are less frequently used as a solution. After ordering 

the frequency from the lowest to the highest, a feasible spanning tree is constructed by inserting the 

link with the lowest frequency first in each session. After the construction of feasible spanning trees, 

tabu search is continued with the intensification procedure. When the number of diversifications is 

equal to D_max, the procedure is terminated. 

 

5. Computational Results 

To test the proposed tabu search for reliable overlay multicast trees, overlay multicast networks are 

generated as in Table 2. Problems with 50, 100 and 200 multicast nodes in a session are considered 

with 1, 2, 3 and 4 sessions. For each case 10 problems are generated by randomly selecting node 

degree, link capacity and delay bound of each session as in the table. The widely spread video 

streaming codec MPEG-I [28] is assumed with service data rate 384 kbps or 600 kbps. Sojourn 

probability for each overlay multicast member is assumed, exponentially distributed with 
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λ−−=  where  is failure rate of member  in session  The memoryless property of 

exponential distribution well characterizes the reliability of an overlay multicast tree. With  

distributed over [0.5 ~ 5.0], sojourn probability  is given by [0.39 ~ 0.99]. Sojourn probability of 

the source node is assumed to be one. All procedures are run on a Pentium IV-1.8 GHz PC with 1024 

Mbytes of memory under Windows XP. 

k
iλ i .k

k
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k
ip

We first test two initial solution strategies: Reliable Initial Tree and Random Initial Tree. Problems 

with 100 nodes are tested with different number of sessions. In each case, ten instances are 

experimented and average performance is shown in Figure 6. The figure shows that the solution by 

Reliable Initial Tree is better than that of Random Initial Tree. For rest of the experiment we thus 

apply Reliable Initial Tree for the initial overlay multicast trees. 

Before applying tabu search, we need to optimize the tabu parameters: tabu list size, N_max for the 

intensification procedure and D_max for the diversification. Tabu list size represents the number of 

iterations during which a target node is forbidden to be adopted in move operation. By assuming that 

an appropriate tabu list size is proportional to the number of nodes in a session, we perform tests with 

five different values. Figure 7 shows that 0  is suitable for tabu list size with 100 nodes. 

Additional tests show that the following tabu list sizes are appropriate:  for problems with 50 

nodes and  for 200 nodes. 

kn2.

kn18.0

kn15.0

Test for N_max is performed as in Figure 8. The figure shows that appropriate value for N_max is 

 for 50 nodes,  for 100 nodes and  for 200 nodes. Test results reveal that the 

number of sessions has little influence on the N_max. This seems to be mainly because only nodes 

with lower sojourn probabilities in all sessions are selected as target nodes. 

kn3.0 kn2.0 kn15.0

The number of diversification is related to the solution quality in tabu search. Test of D_max is 

performed with one and four sessions as in Figure 9. Among ten problems, the portion that gives no 

further improvement for the successive diversification is plotted in the figure. Clearly, more 

diversification is required as the number of nodes increases. From the experiments it seems to be 

reasonable to apply D_max = 8 for 50 nodes, 12 for 100 nodes, and 14 for 200 nodes in case of one, 

two or three sessions. For problems with four sessions, D_max = 9, 13 and 15 are applied for 50, 100 
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and 200 nodes respectively. 

 

Table 2. Parameters for overlay multicast networks 

Number of multicast nodes in session   k )( kn 50, 100 and 200 

Number of sessions  )(K 1, 2, 3 and 4 

Node degree  )( iD 3, 4 and 5 

Link delay  )( k
ijd 1 hop 

Delay bound  )( kL kn1.0 ,  and  kn15.0 kn2.0

Service data rate  )( kr 384 kbps, 600 kbps 

Link capacity  )( ijC 0.6 ~ 1.2 Mbps 

Failure rate ( ) k
iλ 0.5 ~ 5.0 

Sojourn probability ( ) k
ip

k
ie λ−−1  
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Figure 7. Test of tabu list size with 100 nodes 
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Figure 8. Test of N_max 

 

Table 3, 4 and 5 respectively shows results of reliable overlay multicast trees with 50, 100 and 200 

nodes in each session. CPLEX [29] is employed to compare the performance of the proposed tabu 

search. From the tables, it is clear that the performance of proposed tabu search is outstanding. The 

gap from the optimal solution or the lower bound by the CPLEX is within 1% except some problems 

of 50 and 200 nodes. However, the performance of CPLEX is restrictive. Due to the exponential 
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growth of branches in the process of CPLEX, it fails to obtain the optimal solution in 10,000 seconds 

for problems with 100 nodes. Furthermore, in cases of 200 nodes with two or more sessions CPLEX 

fails to solve problems because of memory problem. The time efficiency of tabu search is also 

illustrated in the tables. The increase of solution time is linear to the number of multicast members and 

the number of sessions. 
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Effectiveness of the diversification in the proposed tabu search is demonstrated in Figure 10 with 

100 nodes. The figure shows results of tabu search with and without diversification. With 

diversification, the minimum link reliability measure of the overlay multicast tree is increased 

approximately by 2.5%. 
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Figure 10. Effectiveness of Diversification 
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Figure 11. The effect of node degree 
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Table 3. Computational results of tabu search with 50 nodes in each session 
1 session 2 sessions 3 sessions 4 sessions 

Problem Tabu Search 

(TS) 
CPLEX     GAP**

Tabu Search 

(TS) 
CPLEX GAP**

Tabu Search 

(TS) 
CPLEX GAP**

Tabu Search 

(TS) 
CPLEX GAP**

1 
12.623 

(1.05) 

12.706 

(1127.45) 

0.007      12.949

(1.61) 

13.052 

(1300.20) 

0.008 10.581

(1.70) 

10.646 

(2406.36) 

0.006 10.619

(2.09) 

10.646 

(8232.84) 

0.003 

2 
10.713 

(0.95) 

10.897 

(1136.13) 

0.017      17.543

(1.52) 

17.712 

(1346.17) 

0.010 10.080

(1.69) 

10.128 

(2369.03) 

0.005 9.991

(2.08) 

10.128 

(8462.23) 

0.014 

3 
13.956 

(1.33) 

14.072 

(1454.70) 

0.008      10.283

(1.63) 

10.313 

(1740.06) 

0.003 10.019

(1.67) 

10.078 

(2135.01) 

0.006 10.556

(2.06) 

10.597 

(10000.00*) 

0.004 

4 
10.752 

(1.20) 

10.814 

(1932.72) 

0.006      10.522

(1.55) 

10.572 

(1869.05) 

0.005 11.485

(1.83) 

11.562 

(2141.77) 

0.007 9.980

(1.96) 

10.048 

(10000.00*) 

0.007 

5 
9.961 

(1.02) 

10.081 

(1661.77) 

0.012      11.285

(1.58) 

11.344 

(3944.59) 

0.005 14.269

(1.77) 

14.335 

(2286.23) 

0.005 10.425

(1.97) 

10.472 

(7278.14) 

0.005 

6 
10.967 

(1.09) 

11.080 

(1778.69) 

0.010      11.434

(1.66) 

11.478 

(3208.25) 

0.004 10.865

(1.70) 

10.968 

(4520.80) 

0.009 10.653

(2.05) 

10.685 

(7181.33) 

0.003 

7 
16.040 

(1.05) 

16.314 

(1797.50) 

0.017      13.902

(1.69) 

13.963 

(1255.44) 

0.004 10.356

(1.75) 

10.412 

(4539.44) 

0.005 10.792

(2.08) 

10.848 

(7353.61) 

0.005 

8 
10.259 

(1.00) 

10.438 

(1657.70) 

0.017      10.211

(1.59) 

10.265 

(1746.11) 

0.005 10.681

(1.81) 

10.754 

(4517.42) 

0.007 10.870

(2.07) 

10.954 

(7373.75) 

0.008 

9 
10.425 

(1.19) 

10.572 

(1520.56) 

0.014      13.434

(1.56) 

13.491 

(2587.59) 

0.004 10.332

(1.79) 

10.377 

(5573.94) 

0.004 12.229

(2.02) 

12.302 

(7579.44 ) 

0.006 

10 
11.023 

(1.18) 

11.210 

(1819.69) 

0.017      13.001

(1.58) 

13.116 

(1192.03) 

0.009 10.636

(1.83) 

10.712 

(5587.48) 

0.007 10.440

(2.08) 

10.550 

(1589.41) 

0.011 

*Terminated by the time limit 

** GAP = (CPLEX – TS) / TS 

The numbers in the parenthesis represent the CPU seconds 
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Table 4. Computational results of tabu search with 100 nodes in each session 

1 session 2 sessions 3 sessions 4 sessions 

Problem Tabu Search 

(TS) 
CPLEX     GAP**

Tabu Search 

(TS) 
CPLEX GAP**

Tabu Search 

(TS) 
CPLEX GAP**

Tabu Search 

(TS) 
CPLEX GAP**

1 
10.491 

(4.88) 

10.516 

(10000.00*) 

0.002 11.391 

(6.95) 

11.455 

(10000.00*) 

0.006    11.615

(8.20) 

11.690 

(10000.00*) 

0.006 12.030

(11.28) 

12.146 

(10000.00*) 

0.010 

2 
12.088 

(4.27) 

12.151 

(10000.00*) 

0.005 13.054 

(6.47) 

13.058 

(10000.00*) 

0.000    10.875

(8.30) 

10.887 

(10000.00*) 

0.001 11.338

(11.30) 

11.340 

(10000.00*) 

0.000 

3 
10.658 

(4.58) 

10.735 

(10000.00*) 

0.007 11.159 

(6.50) 

11.216 

(10000.00*) 

0.005    11.299

(8.58) 

11.315 

(10000.00*) 

0.001 12.442

(11.19) 

12.464 

(10000.00*) 

0.002 

4 
16.231 

(4.84) 

16.325 

(10000.00*) 

0.006 9.936 

(6.20) 

9.945 

(10000.00*) 

0.001    10.940

(8.30) 

10.996 

(10000.00*) 

0.005 11.894

(11.92) 

11.903 

(10000.00*) 

0.001 

5 
15.184 

(4.06) 

15.302 

(10000.00*) 

0.008 10.422 

(6.72) 

10.430 

(10000.00*) 

0.001    10.433

(8.86) 

10.448 

(10000.00*) 

0.001 12.633

(11.80) 

12.652 

(10000.00*) 

0.002 

6 
10.933 

(4.30) 

11.005 

(10000.00*) 

0.007 10.104 

(6.75) 

10.153 

(10000.00*) 

0.005    11.368

(8.92) 

11.444 

(10000.00*) 

0.007 9.722

(11.67) 

9.736 

(10000.00*) 

0.001 

7 
12.803 

(4.08) 

12.896 

(10000.00*) 

0.007 10.014 

(6.64) 

10.046 

(10000.00*) 

0.003    10.511

(8.27) 

10.518 

(10000.00*) 

0.001 10.808

(11.09) 

10.829 

(10000.00*) 

0.002 

8 
11.915 

(4.67) 

11.935 

(10000.00*) 

0.002 13.599 

(6.63) 

13.679 

(10000.00*) 

0.006    10.624

(8.33) 

10.690 

(10000.00*) 

0.006 10.733

(11.63) 

10.782 

(10000.00*) 

0.005 

9 
9.898 

(4.64) 

9.938 

(10000.00*) 

0.004 12.517 

(6.03) 

12.551 

(10000.00*) 

0.003    11.873

(8.52) 

11.892 

(10000.00*) 

0.002 13.748

(11.88) 

13.793 

(10000.00*) 

0.003 

10 
18.105 

(4.91) 

18.179 

(10000.00*) 

0.004 10.552 

(6.27) 

10.566 

(10000.00*) 

0.001    10.256

(8.97) 

10.295 

(10000.00*) 

0.004 10.050

(11.16) 

10.138 

(10000.00*) 

0.009 

*Terminated by the time limit 

** GAP = (CPLEX – TS) / TS 

The numbers in the parenthesis represent the CPU seconds 
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Table 5. Computational results of tabu search with 200 nodes in each session 

1 session 2 sessions 3 sessions 4 sessions 

Problem Tabu Search 

(TS) 
CPLEX GAP**

Tabu Search 

(TS) 

Tabu Search 

(TS) 

Tabu Search 

(TS) 

1 
15.375 

(10.02) 

15.381 

(10000.00*)

0.000 12.011 

(13.20) 

10.999 

(17.89) 

13.434 

(20.13) 

2 
14.161 

(10.03) 

14.171 

(10000.00*)

0.001 12.151 

(13.23) 

9.749 

(17.83) 

12.467 

(20.75) 

3 
10.745 

(10.64) 

11.132 

(10000.00*)

0.036 9.950 

(13.25) 

15.098 

(17.42) 

12.306 

(20.53) 

4 
11.734 

(10.65) 

11.742 

(10000.00*)

0.001 9.788 

(13.22) 

11.504 

(17.27) 

10.148 

(20.08) 

5 
11.070 

(10.70) 

11.074 

(10000.00*)

0.000 10.409 

(13.23) 

10.711 

(17.88) 

11.260 

(20.36) 

6 
18.402 

(10.49) 

18.442 

(10000.00*)

0.002 13.125 

(13.31) 

10.004 

(17.86) 

9.693 

(20.63) 

7 
11.014 

(10.39) 

11.036 

(10000.00*)

0.002 9.663 

(13.22) 

14.281 

(17.84) 

12.214 

(20.09) 

8 
17.931 

(10.40) 

17.991 

(10000.00*)

0.003 9.945 

(13.88) 

10.160 

(17.81) 

10.061 

(20.45) 

9 
17.430 

(10.03) 

17.431 

(10000.00*)

0.000 14.299 

(13.19) 

10.831 

(17.02) 

10.102 

(20.55) 

10 
16.305 

(10.05) 

16.332 

(10000.00*)

0.002 9.710 

(13.30) 

9.686 

(17.91) 

10.210 

(20.73) 

*Terminated by the time limit 

** GAP = (CPLEX – TS) / TS 

The numbers in the parenthesis represent the CPU seconds 
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Figure 12. The effect of link capacity 
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Now, we consider sensitivity of the three constraints of the overlay multicast tree problem, i.e., 

node degree, link capacity and delay bound in the formulation of Section 3. Figure 11, 12 and 13 

show the effect of node degree, link capacity and delay bound, respectively. To analyze the effect of 

node degree, the degree of all nodes is fixed to 3, 4 and 5 respectively except for the source node. The 

delay bound is fixed to . As shown in Figure 11, the increase of link reliability seems to be 

sensitive to the node degree in problems with 50 and 100 nodes. The increase is most sensitive in 

problems with 100 nodes when the node degree is changed from three to four. The effect of link 

capacity is shown in Figure 12. The delay bound is also fixed to . The figure shows that the 

increase of minimum link reliability is critical when the link capacity is increased from 600 kbps to 

800 kbps. Finally, Figure 13 shows sensitivity of the objective function to the delay bound. Three 

different delay bounds ,  and 0  are experimented. From the figure, it is clear 

that the link reliability is more sensitive to the delay bound as the number of multicast members 

increases. 
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Figure 13. The effect of delay bound 
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6. Conclusion 

The problem of maximizing the minimum link reliability in overlay multicast tree for private 

Internet broadcasting is examined. To increase network connectivity among users of Internet 

broadcasting, overlay multicast transmission technology is introduced. The application layer overlay 

multicast technology has bandwidth efficiency and scalability compared to the traditional IP multicast. 

However, to support dynamic joining or leaving of group members of each session of Internet 

broadcasting session, we need to rearrange the overlay multicast trees such that they have high link 

connectivity. We assume that each user node has a sojourn probability that resides in its multicast 

group during a fixed period of time. From this sojourn probability, a link reliability measure based on 

an utility function is obtained. 

The problem of maximizing the minimum link reliability is formulated as a binary integer 

programming. Three important constraints of overlay multicast network are considered: node degree, 

link capacity and delay bound. A tabu search heuristic based on repeated intensification and 

diversification is proposed. Link swap and link reconnection moves are considered by employing a 

short-term memory of the tabu list. Diversification based on historical long-term memory is also 

implemented to investigate new and better solution that maximizes the minimum link reliability. 

Computational experiments of the proposed tabu search are performed for overlay multicast 

networks with 50, 100 and 200 nodes in each session. An outstanding performance is illustrated by 

the proposed tabu search. The gap from the optimal solution or the available lower bound is within 

1% except some problems of 50 and 200 nodes. The time efficiency of the proposed tabu search is 

also verified. The increase of solution time is linear to the number of multicast members and sessions. 
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