
Reliable Overlay Multicast Trees for Private Internet Broadcasting

with Multiple Sessions

Chae Y. Lee and Ho Dong Kim

Dept. of Industrial Engineering, KAIST,

373-1 Kusung Dong, Taejon, Korea

{chae, hdkim}@kaist.ac.kr

Abstract

With rapid advances of computing technologies and high speed networks, various high volume

multimedia services have become popular in the Internet. Private Internet broadcasting is a typical

way to support these services and overlay multicast technology is known to be a promising solution to

support this method. In an overlay multicast network, members are dynamically joining or leaving

their multicast group. To reduce frequent updates of multicast members and provide a reliable

multicast route, overlay multicast trees are investigated. The problem is formulated as a binary integer

programming which maximizes the minimum link reliability for all multicast sessions. Tabu search

heuristic is developed with repeated intensification and diversification. Robust computational result is

obtained that is comparable to the optimal solution and applicable in real time.

Keywords

Overlay multicast, Private Internet broadcasting, Multicast session tree, Link reliability, Tabu search

 1

1. Introduction

Various high volume multimedia services such as electronic newspapers, video-conferencing,

video-on-demand (VOD) and cyber education have become popular with rapid advances of computing

technologies and high speed networks. These multimedia contents are transmitted over the Internet

either in download mode or in streaming mode (i.e., video streaming and audio streaming) [1]. In the

download mode, a service user can download the whole multimedia file and then play back the file in

his computer. Streaming mode is necessary for Internet broadcasting, since video contents need not be

downloaded in full and is being played out while parts of the file are received. We in this paper are

interested in video streaming service for private Internet broadcasting [2, 3, 4].

For multimedia services, broadcasting is gradually magnified by contents suppliers, service

providers and receivers. If users have basic computer equipments such as image camera, multimedia

software and sound card, they can provide live Internet broadcasting. This private Internet

broadcasting [2] is different from commercial one in that its service time period is restricted. A typical

example of private Internet broadcasting is SHOUTcast [5] where a distributed streaming audio

service is provided.

For private Internet broadcast, multicast transmission technology has been suggested which has

network bandwidth efficiency [6]. Differently from unicast, multicast permits a source to get away

with transmitting only single stream, regardless of how many receivers exist in its multicast group.

One stream of video is sent to a multicast router and the router sends the packet to one segment of the

network on which there is a receiver. Traditional IP multicast which runs at network layer is not

widely deployed because of technical and economical reasons [7, 8]. Difficulty of inter-domain

communications, scalability problem and additional software requirements on routers hindered the

deployment of IP multicast. Overlay multicast is an emerging technology appearing as a break-through

to solve these problems. Overlay multicast, which runs at the transport layer, is a scalable unicast-

based multicast technique among group members. Since overlay multicast resides on top of densely

connected IP network, it can be easily deployed by effectively reducing complexity of network routers.

One important issue in overlay multicast is to build a multicast tree, where video streams are

 2

transmitted from a source node to its members through the path. Algorithms suggested for overlay

multicast tree construction are classified into two branches [9]: Centralized and distributed algorithms.

Centralized algorithms assume that all multicast members know the network information. Distributed

algorithms, on the other hand, assume that a member node knows only partial information of adjacent

nodes and links. Typical examples of the centralized algorithm are ALMI [10] and Host-Based

Multicast (HBM) [11]. ALMI is designed for a large number of groups, each with a small number of

members. The objective of ALMI is to minimize the cost of multicast trees where the cost of each link

is the round-trip delay. HBM is proposed to fast recover network failures, when multicast members

fail to forward packets.

Decentralized algorithms are divided into tree-first and mesh-first approaches. In the tree-first

approach, a multicast tree can easily be reconstructed when a new node arrives or an existing node

fails. In the mesh-first approach, all multicast members maintain a connected mesh topology and

multicast tree is built up on top of it. The tree-first approach includes YOID [12], Overcast [13] and

NICE [14] and the mesh-first includes Narada [15] and Scattercast [16]. YOID intends to improve

delay and data loss rate in the situation where a tree changes dynamically. Overcast is designed for

scalable and reliable single-source multicast trees under changing network conditions. NICE intends to

produce a number of different trees to improve quality of data streams. The aim of Narada and

Scattercast is to minimize the delay from a multicast source to each multicast member.

In this paper, we are interested in designing reliable overlay multicast trees with multiple sessions.

These multiple sessions are serviced by single source. A typical example of the multiple sessions is

lecture webcasting [17]. In the webcasting, one video streaming shows the speaker and a second

streaming shows the presentation material. Each session of video streaming service has a group of

members whose join and leave actions are centrally controlled by the source. Our objective is to build

a reliable multicast tree for each session that satisfies some common constraints of an overlay network,

which includes the end-to-end delay bound.

The rest of this paper is structured as follows. In Section 2, we discuss overlay multicast for

private Internet broadcasting, where restrictions in the design of overlay multicast trees are examined.

 3

Section 3 presents formulation of reliable overlay multicast trees with multiple sessions. Tabu search

heuristic is developed to solve the problem in Section 4. Construction of initial solutions and

intensification and diversification processes are examined. Computational results and conclusion are

provided in Section 5 and 6 respectively.

2. Overlay Multicast for Private Internet Broadcasting

Multimedia streaming services are now at the beginning of operation over the Internet.

Commercial streaming networks such as Akamai Technologies [18] and Real Network [19] have

deployed large-scale live streaming infrastructures.

As shown in Figure 1, a source of Internet broadcasting produces live audio or video streaming to

provide service to a group of receivers. Due to high bandwidth requirement of video streaming, it is

unusual to transmit raw video streaming over current Internet environment. Thus, encoders are used to

compress raw streaming data before transmitting them to receivers. A receiver decodes audio and

video streaming and enjoys broadcasting services. The receiver also sends its statistical file to the

source to inform the time of joining or leaving the service, service rate and other user request.

Video Camera Encoder

Broadcasting source

Receiver

Receiver

Receiver

Monitor & Logger

(Source level)

Decoder

(User level)

: streaming service flow

: statistical file flow

Video Camera Encoder

Broadcasting source

ReceiverReceiver

ReceiverReceiver

Receiver

Monitor & Logger

(Source level)

User
Decoder

(User level)

: streaming service flow

: statistical file flow

Video Camera Encoder

Broadcasting source

ReceiverReceiver

ReceiverReceiver

Receiver

Monitor & Logger

(Source level)

Decoder

(User level)

: streaming service flow

: statistical file flow

Video Camera Encoder

Broadcasting source

ReceiverReceiver

ReceiverReceiver

Receiver

Monitor & Logger

(Source level)

User
Decoder

(User level)

: streaming service flow

: statistical file flow

Figure 1. Overview of private Internet broadcasting system

 4

Table 1. A log file format for streaming service

Field name Description

remote_host IP address or Domain Name System (DNS) hostname

auth_user Name of authenticated user

Time Time of joining or leaving the service

Event User request, i.e., command name and targeted service class name

service_rate record of the service rate per second

In order for the source to provide a service, a log file [20, 21] is essential to analyze the

characteristic of each subscriber. Since the log file in [20, 21] is designed for web page service, it may

not be suitable for streaming service. Thus, a modified log format is necessary. It must include

information of log-in, log-out, and service rate of each member in each session. A suitable log file

format for streaming service is recommended as in Table 1. The file includes remote_host, auth_ user,

time, event and service_rate. Selection between IP address and DNS hostname for remote_host is

decided by the overlay multicast administration. Time of joining or leaving the service is recorded in

the field of time with the format of [dd/mm/yyyy:hh:mm:ss]. Thus, accumulated log file can be used

as a database for each user.

Now, in overlay multicast, all members including multicast source are connected in application

layer. Therefore, member nodes can communicate each other without additional function of routers.

Figure 2 shows difference between IP and overlay multicasts. In IP multicast, source node first

transmits packets to an adjacent router. The router then copies the data and sends them to other routers

and receivers. However, in overlay multicast, the source node transmits packets to adjacent receivers.

Receivers then forward them to other receivers. In this way receivers successively forward packets to

other members without the aid of routers. IP multicast thus generates unnecessarily many data flows

compared to the overlay multicast. Figure 2 (c) shows logical links in overlay multicast tree without

underlying physical network. Each link in overlay multicast tree represents an independent unicast

session.

 5

S

B

A

D

E

CR1

R2

R3

F

(b) Overlay Multicast

S

B

A

D

E

CR1

R2

R3

F

(b) Overlay Multicast

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

A

B

E

F

D C

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

B

A

D

E

CR1

R2

R3

F

(a) IP Multicast

S

B

A

D

E

CR1

R2

R3

F

S

B

A

E

CR1

R2

R3

F

(a) IP Multicast

S

B

A

D

E

CR1

R2

R3

F

(b) Overlay Multicast

S

B

A

D

E

CR1

R2

R3

F

(b) Overlay Multicast

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

A

B

E

F

D C

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

A

B

E

F

D C

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

A

B

E

F

D C

S

A

B

E

F

D C

(c) Overlay Multicast Tree

S

B

A

D

E

CR1

R2

R3

F

(a) IP Multicast

S

B

A

D

E

CR1

R2

R3

F

S

B

A

E

CR1

R2

R3

F

(a) IP Multicast

Figure 2. IP and Overlay Multicasts

In overlay multicast tree, each member node receives a data flow and forwards it to one or more

successive members. Since each member node has different CPU power and storage size, different

performance may result depending on the capacity limit of a member. Thus, we need to consider

degree constraint which counts the maximum number of unicast data flows a node can transmit. The

average node degree which is mainly dependent on the computing power and buffer size is between

three and four [22].

Another issue in designing an overlay multicast tree is the link capacity. A logical link in the tree

can traverse one or more physical links in the Internet. It is generally assumed that the shortest

physical routing path between member nodes is selected for a logical link. Thus, the link capacity is

restricted by the minimum capacity of physical links in the path. When multiple sessions are routed in

a logical link, the link capacity is critical in designing trees for those sessions.

In designing an overlay multicast tree, we finally need to consider the joining or leaving of group

members. When a member node joins or leaves a multicast session, it needs to be connected into or

disconnected from its tree. Connection of a member to a corresponding multicast session tree can be

performed by periodically updating the tree. However, updating procedure is not simple when a node

leaves a session. If a member leaves a multicast session, all descendant nodes of the member are

disconnected. Therefore, we need to design a reliable multicast tree for each session such that the

 6

multicast tree is sustainable during the session without frequent updates.

3. Overlay Multicast Trees for Multiple Sessions

An overlay multicast network can be modeled with a directed graph),,(EVG = where V and

E represents a set of overlay nodes and links respectively. Given the graph we consider ,G K

multicast sessions such that each session has a set of multicast members, represented as

where All sessions are assumed to have same source That is, single source

provides multiple streaming services in the overlay network. We are interested in constructing an

overlay multicast tree for each session that satisfies constraints in the network. For traditional IP

multicast routing, Oliveira and Pardalos [23] provide diverse applications of combinatorial

optimization.

k ,kS

,VSk ⊂ .,...,1 Kk = .s

For a multicast member node , a path is required to connect node to multicast source

 Let be a binary variable for link in multicast session If there is a direct link from

node to in multicast session Otherwise, Also, let be a binary

variable to represent a path between the source and multicast member of session if

there is a direct link from node i to on the path. Otherwise, Then the following

relationships hold for flow conservation [24].

kSm∈

,k

m

.0

.s k
ijx),(ji

=kijx

j

.k

.0

m

y

i j .1 =kijx
k
ijmy

.k ,1=k
ijmy

=k
ijm

∈=−
∈=+

=− ∑∑
∈∈ ,0

,, , ,1
,, , ,1

),(),(otherwise
Smjiandkallformiif
Smjiandkallforsiif

yy k

k

Eij

k
jim

Eji

k
ijm

For a link to be inserted in the path from the source to node of multicast tree , the

link has to be selected for the session as in the constraint below.

),(ji m k

,kij
k
ijm xy ≤ kSmjiandEjikallfor ∈∈ ,,),(,

Since a multicast tree for session is a spanning tree with members, we have k kn

,1−=∑ k
k
ij nx

),(∈Eji
 kSjiandkallfor ∈,

Now, each member node in the overlay network has capacity limit represented by degree constraint.

 7

Let be the degree constraint of node then we have iD ,i

∑ ∑∑
= ∈∈

≤

+

K

k
i

Eij

k
ji

Eji

k
ij Dxx

1),(),(
, kSjiandkallfor ∈,

To satisfy the end-to-end delay bound for members of session the following constraint is

necessary

,k

,k
k
ijm

k
ij Lyd ≤∑

),(Eji ∈

 kSmjiandkallfor ∈,,

where is the delay in link and is the delay bound of session If d for all

 becomes the end-to-end hop counts in session

k
ijd

kL

),(ji kL .k 1=kij

),,(ji .k

In an overlay network with two or more sessions, trees may traverse the same link. These multiple

sessions have to satisfy the link capacity. Let be the service data rate of session and C be

the capacity of link Then link capacity constraint becomes

kr k ij

).,(ji

,
1
∑
=

≤
K

k
ij

k
ijk Cxr kSjiandEjiallfor ∈∈ ,),(

Now, our objective is to have reliable overlay multicast trees that satisfy all constraints discussed

above. Here, we assume each node has a sojourn probability that resides in its multicast group during a

fixed period of time. After the interval, each multicast session tree is updated with join and leave

information of members. If the sojourn probability is high, it is more desirable for other descendant

members to be connected to the node. This is because descendant nodes connected to a node with

higher sojourn probability may be serviced more reliably during the period. Let be the sojourn

probability of node in session To represent the link reliability, we adopt a logarithmic function

which is usually employed for various utilities. In this study, by applying weight to each session,

the link reliability of session is represented as Note that the link reliability is

distinct for each session due to the sojourn probabilities

k
ip

kw

i .k

k .log k
j

k
i

k pMpw

.kip M is employed to prevent the negative

link reliability. When two nodes are not connected, the link reliability is given by By

assuming

.logMwk

M is as large as desired, the link reliability is consistent to our objective which maximizes

the minimum link reliability in all sessions. Thus, the objective function is given by

 8

[]

−+
∈
∈≤≤

MxpMpxwMinMax k
ij

k
j

k
i

k
ij

k

Sji
EjiKk
k

log)1(log
,

),(1

According to the above discussion, the design of reliable overlay multicast trees can be formulated

as the following binary integer programming problem.

[

−+
∈
∈≤≤

MxpMpxwMinMax k
ij

k
j

k
i

k
ij

k

Sji
EjiKk
k

log)1(log
,

),(1
] (1)

Subject to:

∈=−
∈=+

=− ∑∑
∈∈ ,0

,, , ,1
,, , ,1

),(),(otherwise
Smjiandkallformiif
Smjiandkallforsiif

yy k

k

Eij

k
jim

Eji

k
ijm (2)

,kij
k
ijm xy ≤ kSmjiandEjikallfor ∈∈ ,,),(, (3)

,1−=∑ k
k
ij nx

),(∈Eji

 kSjiandkallfor ∈, (4)

∑ ∑∑
= ∈∈

≤

+

K

k
i

Eij

k
ji

Eji

k
ij Dxx

1),(),(
, kSjiandkallfor ∈, (5)

,k
k
ijm

k
ij Lyd ≤∑

),(Eji ∈

 kSmjiandkallfor ∈,, (6)

,
1
∑
=

≤
K

k
ij

k
ijk Cxr kSjiandEjiallfor ∈∈ ,),((7)

}1,0{ , ∈k
ijm

k
ij yx kSmjiandEjikallfor ∈∈ ,,),(, (8)

Note that the well-known degree constrained or delay constrained spanning tree problem which is

a special case of above binary integer programming is NP-complete [25]. This implies that any known

exact algorithm will run in time exponential in the size of problem instance. Such an algorithm is thus

in most cases unusable for real-world size problems. As encouraging results on NP-complete problems,

we investigate a tabu search heuristic to have reliable overlay multicast trees. The tabu search to

 9

rearrange the multicast trees will efficiently handle members joining and leaving their multicast groups.

4. Tabu Search

Tabu search [26, 27] is a meta-heuristic procedure for solving optimization problems. It is

designed to guide other methods to overcome the trap of local optimality. The main concepts of tabu

search includes: 1) tabu lists and tabu list size, 2) tabu restrictions and aspiration criteria and 3)

intensification and diversification strategies. In this study the following three steps are considered to

obtain the reliable overlay multicast trees as shown in Figure 3.

1) Initial solution (Initial Overlay Multicast Trees)

2) Intensification with a Short-Term Memory

3) Diversification with a Long-Term Memory

The role of a short-term memory is to prohibit moves from recently visited solutions in the

intensification process. Recently visited solutions are stored in a tabu list and forbidden to cycle. Since

the short-term memory may fail to discover good solutions, a long-term memory is introduced. The

long-term memory is to diversify the search space by finding a new solution. Thus, diversification

guarantees a global solution while intensification strategies provide an elite solution in a restricted

search space.

4.1 Initial Overlay Multicast Trees

As an initial solution for the overlay multicast tree, we need a spanning tree for each session that

satisfies node degree, link capacity and delay bound. To obtain an initial overlay multicast tree, two

strategies are considered; “Reliable Initial Tree” and “Random Initial Tree”. For the reliable initial tree,

links are sequenced in nonincreasing order of reliability in each session. Then, a spanning tree is built

by selecting links in the order of reliability. Since the node degree and link capacity are commonly

enjoyed by all sessions, links that satisfy two constraints are selected by each session. A tree

constructed by the procedure above may not satisfy delay bound. To have a feasible solution, a node in

each session that does not satisfy the delay bound is selected. The node and its descendants are

 10

reconnected to an ascendant node of the tree which satisfies the delay bound with higher link

reliability. The reconnection process is continued until all descendant nodes satisfy the delay bound.

Random initial tree is built by randomly selecting links that satisfy node degrees and link capacities.

To have a feasible solution, a node that does not satisfy the delay bound is reconnected to an ascendant

node of the tree. This reconnection process is continued until all nodes satisfy the delay bound.

4.2 Intensification with Short-Term Memory

Since we have an initial feasible tree for each overlay multicast session, we are now interested in

improving the solution by applying tabu search. To have more reliable multicast trees, link swap and

link reconnection moves are considered.

In the link swap move, the link with lowest reliability in all sessions is selected as the target link.

To increase the reliability of the tree target link is exchanged with the highest reliable link

 that satisfies and for links with and Thus, swap

move which results in and (as in Figure 4 guarantees improved minimum reliability.

),(ji

),(ji ′′ k
i

k
i pp >′

),(ji ′

k
j

k
j pp ≥′

), j′

k
j

k
i pp ≥ .kj

k
i pp ′′ ≥

i

Link reconnection is simply to connect the node with lower sojourn probability of the target link to

other node that best improves the link reliability. Figure 5 shows link reconnection process. Node j

with lower sojourn probability of target link is reconnected to other node which has higher

sojourn probability in link

),(ji i′

).,(ji ′′

Intensification procedure is based on a short-term memory which systematically controls the tabu

list. After applying the link swap or link reconnection move, the node with lower sojourn probability

of the target link is added to the tabu list with its session. Nodes added into the tabu list are forbidden

for a certain period to be reselected as a target node. After each move, frequency count of the newly

added link is increased by one, which is a valuable information for diversification. Intensification

process is continued until no solution improvement is obtained consecutively for N_max iterations.

 11

Start

Initial solution

Stop

Updating solution

of NoImprove

< N_max
Yes

No

Yes

No

of Diversification
< D_max

Link reconnection

Diversification

Link swap

Selection

StartStart

Initial solution

StopStop

Updating solution

of NoImprove

< N_max
Yes

No

Yes

No

of Diversification
< D_max

Link reconnection

Diversification

Link swap

Selection

Figure 3. Proposed tabu search procedure

s

i

j

i'

j'

target link with the
lowest reliability candidate link

to swap

s

i

j

i'

j'

s

i

j

i'

j'

target link with the
lowest reliability candidate link

to swap

s

i

j

i'

j'

Figure 4. Link swap move

 12

s

i

j

i'

j'

target link with the
lowest reliability

node with lower
sojourn probability

node with the highest
sojourn probability

s

i

j

i'

j'

s

i

j

i'

j'

target link with the
lowest reliability

node with lower
sojourn probability

node with the highest
sojourn probability

s

i

j

i'

j'

Figure 5. Link reconnection move

4.3 Diversification with Long-Term Memory

The purpose of diversification with a long-term memory is to drive the search into new solution

regions escaping from local optimality. It is initiated when no solution improvement is obtained during

N_max iterations of the intensification process. To restart the tabu search in new solution region,

historical link frequency information is employed. The frequency count of a link represents how often

the link is considered as a solution in previous pass of tabu search. Now, to restart the tabu search, it is

promising to have an initial tree with links that are less frequently used as a solution. After ordering

the frequency from the lowest to the highest, a feasible spanning tree is constructed by inserting the

link with the lowest frequency first in each session. After the construction of feasible spanning trees,

tabu search is continued with the intensification procedure. When the number of diversifications is

equal to D_max, the procedure is terminated.

5. Computational Results

To test the proposed tabu search for reliable overlay multicast trees, overlay multicast networks are

generated as in Table 2. Problems with 50, 100 and 200 multicast nodes in a session are considered

with 1, 2, 3 and 4 sessions. For each case 10 problems are generated by randomly selecting node

degree, link capacity and delay bound of each session as in the table. The widely spread video

streaming codec MPEG-I [28] is assumed with service data rate 384 kbps or 600 kbps. Sojourn

probability for each overlay multicast member is assumed, exponentially distributed with

 13

,1
k
iepki

λ−−= where is failure rate of member in session The memoryless property of

exponential distribution well characterizes the reliability of an overlay multicast tree. With

distributed over [0.5 ~ 5.0], sojourn probability is given by [0.39 ~ 0.99]. Sojourn probability of

the source node is assumed to be one. All procedures are run on a Pentium IV-1.8 GHz PC with 1024

Mbytes of memory under Windows XP.

k
iλ i .k

k
iλ

k
ip

We first test two initial solution strategies: Reliable Initial Tree and Random Initial Tree. Problems

with 100 nodes are tested with different number of sessions. In each case, ten instances are

experimented and average performance is shown in Figure 6. The figure shows that the solution by

Reliable Initial Tree is better than that of Random Initial Tree. For rest of the experiment we thus

apply Reliable Initial Tree for the initial overlay multicast trees.

Before applying tabu search, we need to optimize the tabu parameters: tabu list size, N_max for the

intensification procedure and D_max for the diversification. Tabu list size represents the number of

iterations during which a target node is forbidden to be adopted in move operation. By assuming that

an appropriate tabu list size is proportional to the number of nodes in a session, we perform tests with

five different values. Figure 7 shows that 0 is suitable for tabu list size with 100 nodes.

Additional tests show that the following tabu list sizes are appropriate: for problems with 50

nodes and for 200 nodes.

kn2.

kn18.0

kn15.0

Test for N_max is performed as in Figure 8. The figure shows that appropriate value for N_max is

 for 50 nodes, for 100 nodes and for 200 nodes. Test results reveal that the

number of sessions has little influence on the N_max. This seems to be mainly because only nodes

with lower sojourn probabilities in all sessions are selected as target nodes.

kn3.0 kn2.0 kn15.0

The number of diversification is related to the solution quality in tabu search. Test of D_max is

performed with one and four sessions as in Figure 9. Among ten problems, the portion that gives no

further improvement for the successive diversification is plotted in the figure. Clearly, more

diversification is required as the number of nodes increases. From the experiments it seems to be

reasonable to apply D_max = 8 for 50 nodes, 12 for 100 nodes, and 14 for 200 nodes in case of one,

two or three sessions. For problems with four sessions, D_max = 9, 13 and 15 are applied for 50, 100

 14

and 200 nodes respectively.

Table 2. Parameters for overlay multicast networks

Number of multicast nodes in session k)(kn 50, 100 and 200

Number of sessions)(K 1, 2, 3 and 4

Node degree)(iD 3, 4 and 5

Link delay)(k
ijd 1 hop

Delay bound)(kL kn1.0 , and kn15.0 kn2.0

Service data rate)(kr 384 kbps, 600 kbps

Link capacity)(ijC 0.6 ~ 1.2 Mbps

Failure rate () k
iλ 0.5 ~ 5.0

Sojourn probability () k
ip

k
ie λ−−1

10.000

11.000

12.000

13.000

1 2 3 4

Number of sess ions

O
b
je

ct
iv

e
F
un

ct
io

n
V
al

ue

Random Initial Tree

Reliabile Initial Tree

Figure 6. Test of initial solutions with 100 nodes

 15

9.500

10.000

10.500

11.000

11.500

12.000

12.500

13.000

0.10n_k 0.15n_k 0.20n_k 0.25n_k 0.30n_k

Tabu list size

O
b
je
c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu
e

1 session

2 sessions

3 sessions

4 sessions

kn10.0 kn15.0 kn20.0 kn25.0 kn30.0
9.500

10.000

10.500

11.000

11.500

12.000

12.500

13.000

0.10n_k 0.15n_k 0.20n_k 0.25n_k 0.30n_k

Tabu list size

O
b
je
c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu
e

1 session

2 sessions

3 sessions

4 sessions

kn10.0 kn15.0 kn20.0 kn25.0 kn30.0

Figure 7. Test of tabu list size with 100 nodes

99.500

100.000

100.500

101.000

101.500

102.000

0.10n_k 0.15n_k 0.20n_k 0.25n_k 0.30n_k 0.35n_k

N_max

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

50 nodes in each session

100 nodes in each session

200 nodes in each session

kn10.0 kn15.0 kn20.0 kn35.0kn25.0 kn30.0
99.500

100.000

100.500

101.000

101.500

102.000

0.10n_k 0.15n_k 0.20n_k 0.25n_k 0.30n_k 0.35n_k

N_max

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

50 nodes in each session

100 nodes in each session

200 nodes in each session

99.500

100.000

100.500

101.000

101.500

102.000

0.10n_k 0.15n_k 0.20n_k 0.25n_k 0.30n_k 0.35n_k

N_max

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

50 nodes in each session

100 nodes in each session

200 nodes in each session

kn10.0 kn15.0 kn20.0 kn35.0kn25.0 kn30.0

Figure 8. Test of N_max

Table 3, 4 and 5 respectively shows results of reliable overlay multicast trees with 50, 100 and 200

nodes in each session. CPLEX [29] is employed to compare the performance of the proposed tabu

search. From the tables, it is clear that the performance of proposed tabu search is outstanding. The

gap from the optimal solution or the lower bound by the CPLEX is within 1% except some problems

of 50 and 200 nodes. However, the performance of CPLEX is restrictive. Due to the exponential

 16

growth of branches in the process of CPLEX, it fails to obtain the optimal solution in 10,000 seconds

for problems with 100 nodes. Furthermore, in cases of 200 nodes with two or more sessions CPLEX

fails to solve problems because of memory problem. The time efficiency of tabu search is also

illustrated in the tables. The increase of solution time is linear to the number of multicast members and

the number of sessions.

(a) 1 session

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D_max

C
u
m

m
u
la

ti
ve

 p
o
rt
io

n
 o

f
e
xa

m
p
le

s

50 nodes in each session

100 nodes in each session

200 nodes in each session

(b) 4 sessions

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D_max

C
u
m

m
u
la

ti
ve

 p
o
rt
io

n
 o

f
e
xa

m
p
le

s

50 nodes in each session

100 nodes in each session

200 nodes in each session

Figure 9. Test of D_max

 17

Effectiveness of the diversification in the proposed tabu search is demonstrated in Figure 10 with

100 nodes. The figure shows results of tabu search with and without diversification. With

diversification, the minimum link reliability measure of the overlay multicast tree is increased

approximately by 2.5%.

9.500

10.000

10.500

11.000

11.500

12.000

12.500

13.000

13.500

1 2 3 4

Number of sessions

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

With Diversification

Without Diversification

Figure 10. Effectiveness of Diversification

99.900

99.950

100.000

100.050

100.100

100.150

100.200

100.250

100.300

100.350

100.400

50 100 200

Number of nodes

R
a
tio

 o
f
O

b
je

ct
iv
e

F
un

ct
io

n
 V

a
lu

e

3

4

5

Figure 11. The effect of node degree

 18

Table 3. Computational results of tabu search with 50 nodes in each session
1 session 2 sessions 3 sessions 4 sessions

Problem Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

1
12.623

(1.05)

12.706

(1127.45)

0.007 12.949

(1.61)

13.052

(1300.20)

0.008 10.581

(1.70)

10.646

(2406.36)

0.006 10.619

(2.09)

10.646

(8232.84)

0.003

2
10.713

(0.95)

10.897

(1136.13)

0.017 17.543

(1.52)

17.712

(1346.17)

0.010 10.080

(1.69)

10.128

(2369.03)

0.005 9.991

(2.08)

10.128

(8462.23)

0.014

3
13.956

(1.33)

14.072

(1454.70)

0.008 10.283

(1.63)

10.313

(1740.06)

0.003 10.019

(1.67)

10.078

(2135.01)

0.006 10.556

(2.06)

10.597

(10000.00*)

0.004

4
10.752

(1.20)

10.814

(1932.72)

0.006 10.522

(1.55)

10.572

(1869.05)

0.005 11.485

(1.83)

11.562

(2141.77)

0.007 9.980

(1.96)

10.048

(10000.00*)

0.007

5
9.961

(1.02)

10.081

(1661.77)

0.012 11.285

(1.58)

11.344

(3944.59)

0.005 14.269

(1.77)

14.335

(2286.23)

0.005 10.425

(1.97)

10.472

(7278.14)

0.005

6
10.967

(1.09)

11.080

(1778.69)

0.010 11.434

(1.66)

11.478

(3208.25)

0.004 10.865

(1.70)

10.968

(4520.80)

0.009 10.653

(2.05)

10.685

(7181.33)

0.003

7
16.040

(1.05)

16.314

(1797.50)

0.017 13.902

(1.69)

13.963

(1255.44)

0.004 10.356

(1.75)

10.412

(4539.44)

0.005 10.792

(2.08)

10.848

(7353.61)

0.005

8
10.259

(1.00)

10.438

(1657.70)

0.017 10.211

(1.59)

10.265

(1746.11)

0.005 10.681

(1.81)

10.754

(4517.42)

0.007 10.870

(2.07)

10.954

(7373.75)

0.008

9
10.425

(1.19)

10.572

(1520.56)

0.014 13.434

(1.56)

13.491

(2587.59)

0.004 10.332

(1.79)

10.377

(5573.94)

0.004 12.229

(2.02)

12.302

(7579.44)

0.006

10
11.023

(1.18)

11.210

(1819.69)

0.017 13.001

(1.58)

13.116

(1192.03)

0.009 10.636

(1.83)

10.712

(5587.48)

0.007 10.440

(2.08)

10.550

(1589.41)

0.011

*Terminated by the time limit

** GAP = (CPLEX – TS) / TS

The numbers in the parenthesis represent the CPU seconds

 19

Table 4. Computational results of tabu search with 100 nodes in each session

1 session 2 sessions 3 sessions 4 sessions

Problem Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)
CPLEX GAP**

1
10.491

(4.88)

10.516

(10000.00*)

0.002 11.391

(6.95)

11.455

(10000.00*)

0.006 11.615

(8.20)

11.690

(10000.00*)

0.006 12.030

(11.28)

12.146

(10000.00*)

0.010

2
12.088

(4.27)

12.151

(10000.00*)

0.005 13.054

(6.47)

13.058

(10000.00*)

0.000 10.875

(8.30)

10.887

(10000.00*)

0.001 11.338

(11.30)

11.340

(10000.00*)

0.000

3
10.658

(4.58)

10.735

(10000.00*)

0.007 11.159

(6.50)

11.216

(10000.00*)

0.005 11.299

(8.58)

11.315

(10000.00*)

0.001 12.442

(11.19)

12.464

(10000.00*)

0.002

4
16.231

(4.84)

16.325

(10000.00*)

0.006 9.936

(6.20)

9.945

(10000.00*)

0.001 10.940

(8.30)

10.996

(10000.00*)

0.005 11.894

(11.92)

11.903

(10000.00*)

0.001

5
15.184

(4.06)

15.302

(10000.00*)

0.008 10.422

(6.72)

10.430

(10000.00*)

0.001 10.433

(8.86)

10.448

(10000.00*)

0.001 12.633

(11.80)

12.652

(10000.00*)

0.002

6
10.933

(4.30)

11.005

(10000.00*)

0.007 10.104

(6.75)

10.153

(10000.00*)

0.005 11.368

(8.92)

11.444

(10000.00*)

0.007 9.722

(11.67)

9.736

(10000.00*)

0.001

7
12.803

(4.08)

12.896

(10000.00*)

0.007 10.014

(6.64)

10.046

(10000.00*)

0.003 10.511

(8.27)

10.518

(10000.00*)

0.001 10.808

(11.09)

10.829

(10000.00*)

0.002

8
11.915

(4.67)

11.935

(10000.00*)

0.002 13.599

(6.63)

13.679

(10000.00*)

0.006 10.624

(8.33)

10.690

(10000.00*)

0.006 10.733

(11.63)

10.782

(10000.00*)

0.005

9
9.898

(4.64)

9.938

(10000.00*)

0.004 12.517

(6.03)

12.551

(10000.00*)

0.003 11.873

(8.52)

11.892

(10000.00*)

0.002 13.748

(11.88)

13.793

(10000.00*)

0.003

10
18.105

(4.91)

18.179

(10000.00*)

0.004 10.552

(6.27)

10.566

(10000.00*)

0.001 10.256

(8.97)

10.295

(10000.00*)

0.004 10.050

(11.16)

10.138

(10000.00*)

0.009

*Terminated by the time limit

** GAP = (CPLEX – TS) / TS

The numbers in the parenthesis represent the CPU seconds

 20

Table 5. Computational results of tabu search with 200 nodes in each session

1 session 2 sessions 3 sessions 4 sessions

Problem Tabu Search

(TS)
CPLEX GAP**

Tabu Search

(TS)

Tabu Search

(TS)

Tabu Search

(TS)

1
15.375

(10.02)

15.381

(10000.00*)

0.000 12.011

(13.20)

10.999

(17.89)

13.434

(20.13)

2
14.161

(10.03)

14.171

(10000.00*)

0.001 12.151

(13.23)

9.749

(17.83)

12.467

(20.75)

3
10.745

(10.64)

11.132

(10000.00*)

0.036 9.950

(13.25)

15.098

(17.42)

12.306

(20.53)

4
11.734

(10.65)

11.742

(10000.00*)

0.001 9.788

(13.22)

11.504

(17.27)

10.148

(20.08)

5
11.070

(10.70)

11.074

(10000.00*)

0.000 10.409

(13.23)

10.711

(17.88)

11.260

(20.36)

6
18.402

(10.49)

18.442

(10000.00*)

0.002 13.125

(13.31)

10.004

(17.86)

9.693

(20.63)

7
11.014

(10.39)

11.036

(10000.00*)

0.002 9.663

(13.22)

14.281

(17.84)

12.214

(20.09)

8
17.931

(10.40)

17.991

(10000.00*)

0.003 9.945

(13.88)

10.160

(17.81)

10.061

(20.45)

9
17.430

(10.03)

17.431

(10000.00*)

0.000 14.299

(13.19)

10.831

(17.02)

10.102

(20.55)

10
16.305

(10.05)

16.332

(10000.00*)

0.002 9.710

(13.30)

9.686

(17.91)

10.210

(20.73)

*Terminated by the time limit

** GAP = (CPLEX – TS) / TS

The numbers in the parenthesis represent the CPU seconds

99.800

99.900

100.000

100.100

100.200

100.300

100.400

50 100 200

Number of nodes

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

600 kbps

800 kbps

1000 kbps

1200 kbps

Figure 12. The effect of link capacity

 21

Now, we consider sensitivity of the three constraints of the overlay multicast tree problem, i.e.,

node degree, link capacity and delay bound in the formulation of Section 3. Figure 11, 12 and 13

show the effect of node degree, link capacity and delay bound, respectively. To analyze the effect of

node degree, the degree of all nodes is fixed to 3, 4 and 5 respectively except for the source node. The

delay bound is fixed to . As shown in Figure 11, the increase of link reliability seems to be

sensitive to the node degree in problems with 50 and 100 nodes. The increase is most sensitive in

problems with 100 nodes when the node degree is changed from three to four. The effect of link

capacity is shown in Figure 12. The delay bound is also fixed to . The figure shows that the

increase of minimum link reliability is critical when the link capacity is increased from 600 kbps to

800 kbps. Finally, Figure 13 shows sensitivity of the objective function to the delay bound. Three

different delay bounds , and 0 are experimented. From the figure, it is clear

that the link reliability is more sensitive to the delay bound as the number of multicast members

increases.

kn15.0

kn1.0

kn15.0

kn15.0 kn2.

99.000

99.500

100.000

100.500

101.000

101.500

102.000

50 100 200

Number of nodes

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

0.10n_k

0.15n_k

0.20n_k

kn10.0
kn15.0
kn20.0

99.000

99.500

100.000

100.500

101.000

101.500

102.000

50 100 200

Number of nodes

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

0.10n_k

0.15n_k

0.20n_k

99.000

99.500

100.000

100.500

101.000

101.500

102.000

50 100 200

Number of nodes

R
a
ti
o
 o

f
O

b
je

c
ti
ve

 F
u
n
c
ti
o
n
 V

a
lu

e

0.10n_k

0.15n_k

0.20n_k

kn10.0
kn15.0
kn20.0

Figure 13. The effect of delay bound

 22

6. Conclusion

The problem of maximizing the minimum link reliability in overlay multicast tree for private

Internet broadcasting is examined. To increase network connectivity among users of Internet

broadcasting, overlay multicast transmission technology is introduced. The application layer overlay

multicast technology has bandwidth efficiency and scalability compared to the traditional IP multicast.

However, to support dynamic joining or leaving of group members of each session of Internet

broadcasting session, we need to rearrange the overlay multicast trees such that they have high link

connectivity. We assume that each user node has a sojourn probability that resides in its multicast

group during a fixed period of time. From this sojourn probability, a link reliability measure based on

an utility function is obtained.

The problem of maximizing the minimum link reliability is formulated as a binary integer

programming. Three important constraints of overlay multicast network are considered: node degree,

link capacity and delay bound. A tabu search heuristic based on repeated intensification and

diversification is proposed. Link swap and link reconnection moves are considered by employing a

short-term memory of the tabu list. Diversification based on historical long-term memory is also

implemented to investigate new and better solution that maximizes the minimum link reliability.

Computational experiments of the proposed tabu search are performed for overlay multicast

networks with 50, 100 and 200 nodes in each session. An outstanding performance is illustrated by

the proposed tabu search. The gap from the optimal solution or the available lower bound is within

1% except some problems of 50 and 200 nodes. The time efficiency of the proposed tabu search is

also verified. The increase of solution time is linear to the number of multicast members and sessions.

References

[1] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin Zhang and Jon M. Peha, “Streaming Video

over the Internet: Approaches and Directions”, IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 11, No. 3, 2001, pp. 282-300.

[2] Sangmoon Lee, Sinjun Kang, Byungseok Min and Hagbae Kim, “Development of s Scalable

 23

Clustering Streaming Server for the Internet Personal-Live Broadcasting”, In Proceedings of IEEE

12th International Symposium on Software Reliability Engineering, Hong Kong, Nov., 2001, pp.

33-34.

[3] SpotLife, http://www.spotlife.com.

[4] Personal Internet Broadcasting, http://www.ibaglobal.com/pib.html.

[5] SHOUTcast, http://www.shoutcast.com.

[6] Yang-hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao, Kunwadee Sripanidkulchai, Jibin

Zhan and Hui Zhang, “Early Experience with an Internet Broadcast System Based on Overlay

Multicast”, Technical Report CMU-CS-03-214, Carnegie Mellon University, Dec., 2003.

[7] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem and Doug Balensiefen,

“Deployment Issues for the IP Multicast Service and Architecture”, IEEE Network, Vol. 14, No. 1,

2000, pp. 78-88.

[8] Carlos A.S. Oliveira and Panos M. Pardalos, “Algorithms for the Streaming Cache Placement

Problem on Multicast Networks”, In Proceedings of Seventh INFORMS Telecommunications

Conference (ITC’04), Boca Raton, Florida, Mar., 7-10, 2004.

[9] A. El-Sayed, V. Roca and L. Mathy, “A Survey of Proposals for an Alternative Group

Communication Service”, IEEE Network, Vol. 17, No. 1, Jan., 2003, pp. 46-51.

[10] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma and Marcel Waldvogel, “ALMI: An Application

Level Multicast Infrastructure”, In Proceedings of the 3rd USENIX Symposium on Internet

Technologies and Systems (USITS), 2001.

[11] V. Roca and A. El-sayed, “A Host-based Multicast (HBM) Solution for Group Communication”,

In Proceedings of IEEE International Conference on Networking, 2001.

[12] Paul Francis, Yuri Pryadkin, Pavlin Radoslavov, Ramesh Govindan and Bob Lindell, “Yoid: Your

Own Internet Distribution”, http://www.isi.edu/div7/yoid/docs/paper.ps.

[13] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek and James W. O’Toole,

“Overcast: Reliable Multicasting with an Overlay Network”, In Proceedings of 5th Symposium on

Opening System Design and Implementation, 2000.

 24

 25

[14] Suman Banerjee, Bobby Bhattacharjee and Christopher Kommareddy, “Scalable Application

Layer Multicast”, In proceedings of ACM SIGCOMM, 2002, pp. 205-220.

[15] Yang-hua Chu, Sanjay G. Rao, Srinivasan and Hui Zhang, “A Case for End System Multicast”,

IEEE Journal on Selected Areas in Communications, Vol. 20, No. 8, Oct., 2002, pp. 1456-1471.

[16] Yatin Chawathe, Steven McCanne and Eric Brewer, “An Architecture for Internet Content

Distribution as an Infrastructure Service”, unpublished paper, 2000.

[17] Lawrence A. Rowe, Diane Harley, Peter Pletcher and Shannon Lawrence, “BIBS: A Lecture

Webcasting System”, Technical Report, Berkeley Multimedia Research Center (BMRC), University

of California, Berkeley, June, 2001.

[18] Akamai, http://www.akamai.com.

[19] Real broadcast network, http://www.real.com/

[20] Common Log Format, http://www.w3.org/Daemon/User/Config/Logging.html.

[21] Extended Common Log Format, http://www.w3.org/TR/WD-logfile.html.

[22] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhattacharjee and Samir

Khuller, “Construction of an Efficient Overlay Multicast Infrastructure for Real-time Applications”,

In Proceedings of IEEE INFOCOM, 2003, pp. 1521-1531.

[23] Carlos A.S. Oliveira and Panos M. Pardalos, “A Survey of Combinatorial Optimization Problems

in Multicast Routing”, Computers and Operations Research, Vol. 32, No. 8, 2005, pp. 1953-1981.

[24] Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, “Linear Programming and Network

Flows”, 2nd edition, John Wiley & Sons, 1990.

[25] Michael R. Garey and David S. Johnson, “Computers and Intractability: A Guide to the Theory

of NP-Completeness”, W. H. Freeman and Company, 1979.

[26] Fred Glover and Manuel Laguna, “Tabu Search”, Kluwer Academic Publishers, 1997.

[27] Fred Glover, “Tabu Search: A Tutorial”, Interfaces, 1990.

[28] Digital Encoding Services, Inc, http://www.digital-encoding.com/streaming_enc.htm.

[29] CPLEX 8.1, http://www.ilog.com/products/cplex.

