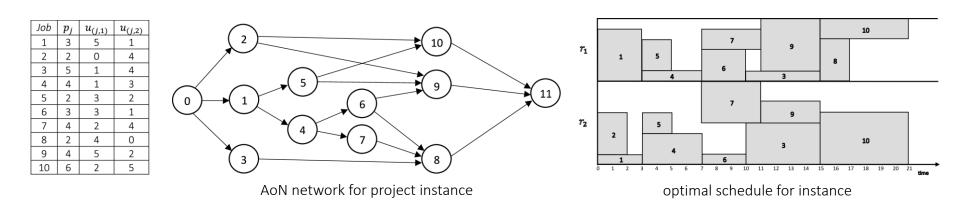
Jangeun Kim 20236471

Term Project Progress Presentation


[Resource-Constrained Project Scheduling Problem, RCPSP]

Contents

- 1. What is the RCPSP?
- 2. Problem Definition
- 3. Future plans

Definition

- Resource-Constrained Project Scheduling Problem (RCPSP) is a <u>combinatorial optimization problem</u> in the field of operations research and project management.
- ✓ It involves scheduling a set of activities or tasks with given durations and resource requirements in such a way that the project is completed as quickly as possible while respecting resource constraints.

• Key considerations (Constraints)

✓ Activities

These are tasks or jobs that need to be scheduled.

Each activity has a defined duration, a set of required resources, and precedence relationships with other activities.

✓ Resources

There are limited resources available for executing the activities.

Resources can include labor, machinery, materials, or any other constraints that can affect the scheduling

✓ Precedence Relationships

These dependencies are represented as precedence relationships.

Activities may have dependencies on each other, meaning that certain activities must be completed before others can start.

Main objective

- The objective in RCPSP is to find a schedule that minimizes the project's makespan while satisfying the resource constraints and respecting the precedence relationships between activities
- RCPSP is known to be an NP-hard problem, which means that finding an optimal solution can be computationally challenging, especially for large and complex projects.

$$\begin{aligned} \text{Minimize} \quad & \sum_{t=0}^{T} t \cdot x_{J+1,t} \\ \text{subject to} \\ & \sum_{t=0}^{T} x_{jt} = 1 \qquad j = 0, \dots, J+1 \\ & \sum_{t=0}^{T} t \cdot x_{ht} \leq \sum_{t=0}^{T} (t-p_j) \cdot x_{jt} \qquad j = 0, \dots, J+1, \ h \in P_j \\ & \sum_{j=1}^{J} \sum_{q=t}^{t+p_j-1} r_{j,k,t+p_j-q} \cdot x_{jq} \leq R_{kt} \qquad k = 1, \dots, K, \ t = 1, \dots, T \\ & x_{jt} \in \{0, 1\} \qquad j = 0, \dots, J+1, \ t = 0, \dots, T \end{aligned}$$

• What is the difference between RCPSP and JSSP?

Job Shop Scheduling Problem (JSSP)

✓ <u>Scope</u>

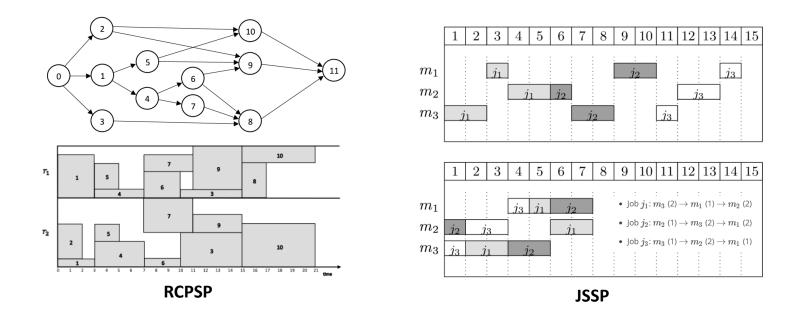
- **RCPSP** is primarily concerned with **scheduling activities in a project environment**. The activities are tasks that need to be executed to complete a project.
- JSSP is focused on scheduling jobs in a manufacturing environment, particularly in job shops where different jobs require different sequences of operations on various machines.

✓ <u>Constraints</u>

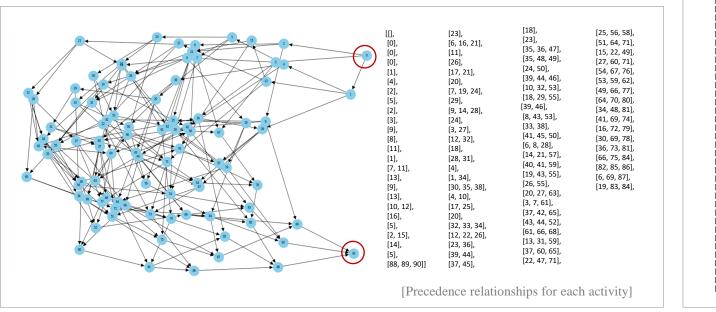
- **RCPSP** : Activities, Resources, Precedence
- JSSP : Jobs and Operations , Machines, Precedence

✓ <u>Objective</u>

• RCPSP/JSSP : minimize the makespan


✓ <u>Applications</u>

- RCPSP is commonly used in project management scenarios, such as construction projects, software development projects, and manufacturing projects where tasks are interdependent.
- JSSP is commonly used in manufacturing settings, such as job shops, where different types of jobs with varying processing requirements need to be scheduled on available machines.


• What is the difference between RCPSP and JSSP?

✓ In summary,

- **RCPSP** is more aligned with **project-based scheduling**, where tasks have precedence relationships, and the goal is to optimize the overall project completion time.
- JSSP is focused on manufacturing environments, where jobs involve multiple operations on different machines, and the objective is often to minimize makespan.

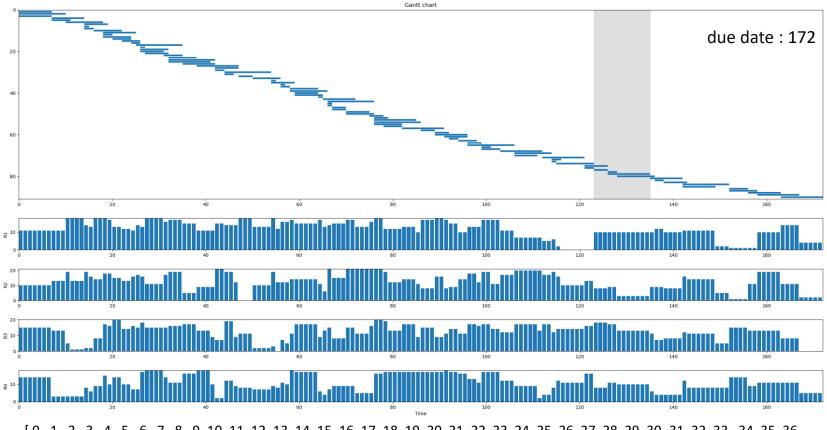
- Problem Description
 - ✓ Project / Activities / Sum of duration : 1 / 92 (including dummy) / 477 days
 - ✓ Resources type / total amount : 4 / [18, 21, 20, 18]
 - ✓ Precedence Relationships

[0, 7, 10, 7, 7, 2, 8, 6, 1, 7, 10, 4, 5, 4, 6, 5, 1, 5, 7, 6, 6, 10, 9, 2, 4, 5, 2, 10, 3, 6, 9, 1, 5, 2, 8, 5, 6, 6, 1, 10, 3, 2, 7, 2, 1, 1, 3, 6, 1, 6, 4, 9, 10, 5, 3, 3, 4, 3, 10, 5, 9, 3, 3, 9, 2, 8, 2, 7, 1, 4, 8, 9, 5, 2, 5, 3, 4, 2, 9, 8, 7, 10, 4, 2, 2, 7, 6, 7, 9, 9, 5, 0]

[Duration for each activity]

[Resource re

quirement for	each activity]
quirement for [[0, 0, 0, 0], [0, 0, 5, 6], [1, 1, 8, 0], [10, 6, 1, 3], [10, 6, 1, 3], [10, 6, 1, 3], [10, 6, 1, 3], [10, 6, 1, 3], [10, 6, 1, 3], [1, 3, 0, 2], [3, 3, 6, 0], [6, 4, 5, 0], [8, 5, 1, 0], [2, 4, 0, 6], [0, 6, 4, 0], [0, 6, 4, 0], [0, 0, 0, 3], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0],	each activity [4, 8, 1, 0], [8, 0, 0, 8], [2, 3, 0, 5], [10, 6, 10, 2], [0, 0, 7, 9], [9, 8, 8, 9], [1, 3, 1, 8], [8, 0, 10, 10], [8, 0, 7, 8], [4, 5, 8, 1], [8, 4, 6, 7], [0, 7, 6, 1], [9, 7, 8, 10], [3, 8, 0, 0], [2, 10, 4, 2], [6, 8, 5, 0], [7, 0, 1, 4], [3, 3, 8, 0], [5, 10, 4, 2], [6, 8, 5, 0], [7, 0, 1, 4], [3, 3, 8, 0], [5, 10, 9, 0], [5, 11, 4, 3], [2, 8, 0, 4], [0, 6, 4, 3], [0, 7, 8, 4], [0, 7, 8, 4], [0, 3, 4, 6], [10, 5, 8, 8], [0, 0, 7, 10], [2, 5, 5, 8], [0, 0, 7, 10], [2, 5, 5, 8], [0, 0, 7, 10], [2, 5, 5, 8], [0, 0, 7, 10], [2, 5, 5], [10, 0, 9, 8], [1, 1, 8, 4], [0, 2, 1, 4], [0, 2, 1, 4], [0, 3, 4, 6], [10, 6, 7, 10], [2, 5, 5], [10, 0, 9, 8], [4, 2, 0, 5], [10, 2, 1, 4], [5, 0, 0, 0]]

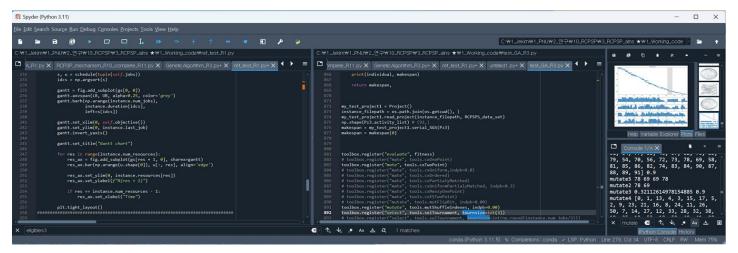

- How to solve this problem?
 - ✓ Use GA as one of the metaheuristic algorithm model
 - \checkmark Design the GA using the Python
 - Initialization population : making feasible activity string considering constraints
 chromosome or genotype : Integer string
 - Fitness Evaluation : Minimize the makespan (=objective function)
 - Selection : Tournament Selection
 - Crossover : One-Point Crossover

Improach may be subject to change depending on the situation

- Mutation : Swap two adjacent activities (considering RCPSP characteristic) The approach may be subject to change depending on the situation
- Termination Criteria : a number of generations(<=1000)

• How to solve this problem?

 \checkmark Example of feasible activity string



[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]

3. Future plans

3. Future plans

• Designing and Coding the GA for RCPSP using the python

• Coding the MILP for RCPSP using the python

 \checkmark For the comparison between a feasible solution and an optimal solution

Thanks