
Term Project Final Presentation
[Resource-Constrained Project Scheduling Problem, RCPSP]

Jangeun Kim 20236471

Contents

• 1. What is the RCPSP?

• 2. Problem Definition

• 3. GA design

• 4. Performance result

• 5. Conclusion & future plan

2/30

1. What is the RCPSP?

3

1. What is the RCPSP?

✓ Resource-Constrained Project Scheduling Problem (RCPSP) is a
combinatorial optimization problem in the field of operations research
and project management.

• Definition

✓ It involves scheduling a set of activities or tasks with given durations and
resource requirements in such a way that the project is completed as
quickly as possible while respecting resource constraints.

optimal schedule for instanceAoN network for project instance

4/30

1. What is the RCPSP?

• Key considerations (Constraints)

✓ Activities

✓ Resources

✓ Precedence Relationships

These are tasks or jobs that need to be scheduled.

There are limited resources available for executing the activities.

These dependencies are represented as precedence relationships.

☞ Each activity has a defined duration, a set of required resources, and precedence relationships

with other activities.

☞ Resources can include labor, machinery, materials, or any other constraints that can affect the

scheduling

☞ Activities may have dependencies on each other, meaning that certain activities must be

completed before others can start.

5/30

1. What is the RCPSP?

• Main objective

✓ The objective in RCPSP is to find a
schedule that minimizes the
project's makespan while satisfying
the resource constraints and
respecting the precedence
relationships between activities

✓ RCPSP is known to be an NP-hard
problem, which means that finding
an optimal solution can be
computationally challenging,
especially for large and complex
projects.

6/30

1. What is the RCPSP?

• What is the difference between RCPSP and JSSP?

✓ Scope

• RCPSP is primarily concerned with scheduling activities in a project environment.
The activities are tasks that need to be executed to complete a project.

• JSSP is focused on scheduling jobs in a manufacturing environment, particularly in job shops
where different jobs require different sequences of operations on various machines.

Job Shop Scheduling Problem (JSSP)

✓ Constraints

• RCPSP : Activities, Resources, Precedence

• JSSP : Jobs and Operations , Machines, Precedence

✓ Objective

• RCPSP/JSSP :
minimize the makespan

✓ Applications

• RCPSP is commonly used in project management scenarios, such as construction projects,
software development projects, and manufacturing projects where tasks are
interdependent.

• JSSP is commonly used in manufacturing settings, such as job shops, where different types
of jobs with varying processing requirements need to be scheduled on available machines.

7/30

1. What is the RCPSP?

• What is the difference between RCPSP and JSSP?

✓ In summary,

• RCPSP is more aligned with project-based scheduling, where tasks have precedence
relationships, and the goal is to optimize the overall project completion time.

• JSSP is focused on manufacturing environments, where jobs involve multiple
operations on different machines, and the objective is often to minimize makespan.

JSSPRCPSP

8/30

1. What is the RCPSP?

• Reasons for using GA to solve RCPSP

9/30

✓ Applying Genetic Algorithms (GAs) to the resource-constrained project
scheduling problem (RCPSP) is advantageous for the following key reasons :

Diverse Exploration Parallel Processing

Robustness to Constraints Automated Search and Adaptability

➢ In summary,
GAs are favored in RCPSP due to their ability to explore diverse solutions,
handle complex constraints, perform parallel processing, and adapt to
various scheduling scenarios, which gives them a competitive edge over
other heuristic methods.

2. Problem Definition

2. Problem Definition

• Problem Description

✓ Project / Activities / Sum of duration : 1 / 92 (including dummy) / 477 days

✓ Precedence Relationships

✓ Resources type / total amount : 4 / [18, 21, 20, 18] [[0, 0, 0, 0],
 [0, 0, 5, 6],
 [1, 1, 8, 0],
 [10, 9, 2, 8],
 [10, 6, 1, 3],
 [4, 9, 1, 1],
 [8, 7, 0, 0],
 [9, 7, 7, 4],
 [1, 3, 0, 2],
 [3, 3, 6, 0],
 [6, 4, 5, 0],
 [8, 5, 1, 0],
 [2, 4, 0, 6],
 [0, 6, 4, 0],
 [0, 3, 10, 9],
 [1, 0, 1, 5],
 [5, 5, 3, 2],
 [10, 0, 0, 3],
 [4, 0, 6, 7],
 [4, 3, 6, 0],
 [1, 5, 0, 1],
 [7, 2, 1, 1],
 [0, 0, 4, 8],
 [4, 3, 3, 5],
 [0, 10, 0, 2],
 [5, 5, 5, 0],
 [10, 9, 0, 0],
 [9, 0, 2, 7],
 [9, 0, 9, 1],
 [4, 10, 0, 0],
 [0, 7, 2, 2],
 [0, 0, 2, 1],
 [8, 2, 0, 8],
 [8, 10, 5, 2],
 [9, 6, 9, 0],
 [0, 0, 6, 6],
 [6, 2, 0, 1],
 [0, 6, 2, 10],
 [10, 4, 10, 0],
 [0, 7, 1, 3],
 [7, 0, 2, 2],

[0, 7, 10, 3],
 [4, 0, 4, 4],
 [0, 8, 9, 7],
 [0, 10, 0, 0],
 [6, 7, 3, 1],

[4, 8, 1, 0],
 [8, 0, 0, 8],
 [2, 3, 0, 5],
 [10, 6, 10, 2],
 [0, 0, 7, 9],
 [9, 8, 8, 9],
 [1, 3, 1, 8],
 [8, 0, 10, 10],
 [8, 0, 7, 8],
 [4, 5, 8, 1],
 [8, 4, 6, 7],
 [0, 7, 6, 0],
 [9, 7, 8, 10],
 [3, 8, 0, 0],
 [2, 10, 4, 2],
 [6, 8, 5, 0],
 [7, 0, 1, 4],
 [3, 3, 8, 0],
 [0, 8, 3, 0],
 [5, 10, 9, 0],
 [5, 1, 4, 3],
 [2, 8, 0, 4],
 [4, 6, 4, 3],
 [0, 6, 1, 2],
 [0, 3, 6, 7],
 [0, 7, 8, 4],
 [0, 3, 10, 0],
 [0, 7, 0, 9],
 [0, 0, 4, 7],
 [10, 5, 8, 8],
 [0, 6, 4, 1],
 [0, 9, 8, 7],
 [10, 0, 9, 4],
 [0, 3, 4, 6],
 [10, 6, 7, 0],
 [2, 5, 5, 8],
 [0, 0, 7, 10],
 [2, 6, 0, 1],
 [2, 3, 0, 4],
 [9, 9, 6, 0],
 [1, 1, 8, 4],
 [0, 10, 5, 5],
 [10, 9, 8, 6],
 [4, 2, 0, 5],
 [0, 2, 1, 4],
 [0, 0, 0, 0]]

[[],
 [0],
 [0],
 [0],
 [1],
 [4],
 [2],
 [5],
 [2],
 [3],
 [9],
 [8],
 [11],
 [1],
 [7, 11],
 [13],
 [9],
 [13],
 [10, 12],
 [16],
 [5],
 [2, 15],
 [14],
 [5],
 [88, 89, 90]]

[23],
 [6, 16, 21],
 [11],
 [26],
 [17, 21],
 [20],
 [7, 19, 24],
 [29],
 [9, 14, 28],
 [24],
 [3, 27],
 [12, 32],
 [18],
 [28, 31],
 [4],
 [1, 34],
 [30, 35, 38],
 [4, 10],
 [17, 25],
 [20],
 [32, 33, 34],
 [12, 22, 26],
 [23, 36],
 [39, 44],
 [37, 45],

[18],
 [23],
 [35, 36, 47],
 [35, 48, 49],
 [24, 50],
 [39, 44, 46],
 [10, 32, 53],
 [18, 29, 55],
[39, 46],
 [8, 43, 53],
 [33, 38],
 [41, 45, 50],
 [6, 8, 28],
 [14, 21, 57],
 [40, 41, 59],
 [19, 43, 55],
 [26, 55],
 [20, 27, 63],
 [3, 7, 61],
 [37, 42, 65],
 [43, 44, 52],
 [61, 66, 68],
 [13, 31, 59],
 [37, 60, 65],
 [22, 47, 71],

[25, 56, 58],
 [51, 64, 71],
 [15, 22, 49],
 [27, 60, 71],
 [54, 67, 76],
 [53, 59, 62],
 [49, 66, 77],
 [64, 70, 80],
 [34, 48, 81],
 [41, 69, 74],
 [16, 72, 79],
 [30, 69, 78],
 [36, 73, 81],
 [66, 75, 84],
 [82, 85, 86],
 [6, 69, 87],
 [19, 83, 84],

[0, 7, 10, 7, 7, 2, 8, 6, 1, 7, 10, 4, 5, 4, 6, 5, 1,
 5, 7, 6, 6, 10, 9, 2, 4, 5, 2, 10, 3, 6, 9, 1, 5, 2,
 8, 5, 6, 6, 1, 10, 3, 2, 7, 2, 1, 1, 3, 6, 1, 6, 4,
 9, 10, 5, 3, 3, 4, 3, 10, 5, 9, 3, 3, 9, 2, 8, 2, 7,
 1, 4, 8, 9, 5, 2, 5, 3, 4, 2, 9, 8, 7, 10, 4, 2, 2,
 7, 6, 7, 9, 9, 5, 0]

[Duration for each activity]

[Precedence relationships for each activity]

[Resource requirement for each activity]

11/30

2. Problem Definition

• How to solve this problem?

✓ Example of feasible activity string

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]

due date : 172

12/30

3. GA design

13

3. GA design

• GA design for RCPSP

✓ Representation of a chromosome : Order type based on Integer
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91]

e.g.

✓ Fitness function : Minimize the makespan (=objective function)

✓ Generation of population and termination criteria

• Initialization population : making feasible activity Integer string considering constraints

• Termination Criteria : a number of generations(<=300)
* Detailed content is explained in Chapter 4.

☞ Step1. the dummy source activity is started at time 0.

☞ Step2. Sorting based on the Latest Finish Time

☞ Step3. Identification and selection of activities that satisfy the precedence condition.

* If there are multiple activities that satisfy multiple Precedence conditions, randomly select one activity from the pool.

☞ Step4. Through repeating the above steps, generate various strings that satisfy the constraints.

14/30

3. GA design

• GA design for RCPSP

✓ Operators

• Crossover : One-Point Crossover

☞ Step 1. selecting integer q from Mother or Father String

• Mutation : Swap two adjacent activities (considering RCPSP characteristic)

M=(1,3,2,5,4,6)

F=(2,4,6,1,3,5)

☞ Step 2. Performing crossover on the Mother or Father string.

☞ Step 3. Creating a child (daughter, son) string.

M=(1,3,2|5,4,6)

F=(2,4,6,1,3,5)
D=(1,3,2,4,6,5)

M=(1,3,2,5,4,6)

F=(2,4,6,1,3,5)

M=(1,3,2,5,4,6)

F=(2,4,6|1,3,5)
S=(2,4,6,1,3,5)

(Existing Population) (Operating CX q=3) (Creating new string)

(Pop size : 2) (Pop size : 4)

e.g.

𝑢~𝑈(0,1)

e.g. If 𝑢~𝑈(0,1) < Mutation probability : D=(1,3,2,4,6,5) -> D=(1,2,3,4,6,5)

*However,

it is only executed in the case of precedence feasibility, and in the case of not having precedence feasibility, the original string is maintained.

15/30

3. GA design
• GA design for RCPSP
✓ Operators

• Selection : Ranking method

☞ Step 1. Calculating fitness values for the total population.

* Total population(2n) = Existing population(n)(Mother and Father) + New population(n)(Mother, Father, Daughter, Son)

☞ Step 2. Keeping best sting and remove the remaining ones from the population

* In case of ties, the decision is made arbitrarily.

* After applying the selection method, the population reduces from 2n to n.

M=(1,3,2,5,4,6)

F=(2,4,6,1,3,5)

D=(1,3,2,4,6,5)

S=(2,4,6,1,3,5)

M=12

F=13

D=11

S=13

F=(2,4,6,1,3,5)*

D =(1,3,2,4,6,5)

* Randomly selecting

(Total Population, N=4) (Fitness value, N=4) (Operating selection, N=2)

✓ Parallel GAs
• Multiprocessing : Calculating multiple fitness values using Python multiprocessing

* Python multiprocessing is a module in Python that supports parallel programming.

It enables the creation and management of multiple processes, allowing tasks to be executed concurrently.

This module is particularly useful for CPU-bound tasks where parallel processing can significantly improve performance.
16/30

4. Performance results

4. Performance results
• GA performance results

✓ Case1 : Generation fixed, Population increment, Mutation probability : 5%

★

★

★

※ The stat mark indicates a fitness value of 140 or less

18/30

4. Performance results

• GA performance results

★★

✓ Case1 : Generation fixed, Population increment, Mutation probability : 5%

➢ There is a tendency for the fitness value to increase as the generation increases

➢ 200 generations are sufficient to achieve satisfactory results

➢ However, it is confirmed that the fitness value does not decrease below 140 even with
an increase in generation.

In summary,

❖ To enhance the fitness value,
the effects of Population size and mutation need to be considered.

19/30

※ The stat mark indicates a fitness value of 140 or less

4. Performance results

• GA performance results

✓ Case2 : Generation fixed, Population increment, Mutation probability : 5%

★ ★ ★ ★

➢ As anticipated, there is an increase in fitness value with the increase in generation.
However, it has been confirmed that the fitness value does not improve further
beyond a population size of 3000.

➢ Still confirmed that the fitness value does not decrease below 139 even with further
increases in generation.

※ The stat mark indicates a fitness value of 140 or less

In summary,

❖ To enhance the fitness value,
the effects of mutations need to be considered.

20/30

4. Performance results

• GA performance results

✓ Case3 : Generation fixed, Population increment, Mutation probability : 50%

➢ It has been observed that a mutation rate of 50%(case3) results in a performance
degradation compared to a mutation rate of 10%(case2)

➢ The reason for this is attributed to the fact that the effect of hindering convergence
to the minimum fitness value by the fitness function is more substantial than the
effect of mutation(escaping from local optima).

★

※ The stat mark indicates a fitness value of 140 or less

❖ Therefore, further experiments are required to establish an effective
mutation probability setting.

In summary,

★★★

21/30

4. Performance results

• GA performance results

✓ Case4 : Generation fixed, Population fixed, Mutation probability increment

★★★★★

★

※ The stat mark indicates a fitness value of 140 or less

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

➢ It has been observed that as the mutation probability increases (from 10% to 60%), the
fitness value of 140 or less. (best fitness value : 138 under Pm 30%)

➢ It has been confirmed that the performance of the Genetic Algorithm (GA) deteriorates
when the mutation probability exceeds 70% (due to excessive mutation effects, similar to case 3).

❖ The effect of quickly converging to the best fitness value has been observed
at a mutation probability of 30%.

22/30

4. Performance results

• GA performance results

✓ Case5 : Generation fixed, Population increment, Mutation probability : 30%
※ The stat mark indicates a fitness value of 140 or less

★★★★★

➢ Observations while increasing the population size(from 1000 to 5000) indicate that the
fitness value converges to 138, and it does not decrease further.

❖ Considering the computational power, it is deemed reasonable to set the
population size(1000), generation size(300), and mutation probability(30%)
based on the comprehensive analysis of the previous results.

23/30

4. Performance results

• Performance comparison results (GA vs MILP)

✓ GA results using Python(Pop size : 1000, Gen size : 300, Pm : 30%)

➢ Fitness value = [inf, 153, 153, 153, 150, 150, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 149, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 145, 145, 145, 145, 145,
144, 144, 144, 144, 143, 143, 142,
142, 142, 142, 142, 142, 141, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140,
140, 140, 139,
139,
139, 139, 139, 139, 139, 138,
138,
138,
138, 138, 138, 138, 138, 138, 138]

Fitness curve

Best feasible solution = 138 days

24/30

4. Performance results

• Performance comparison results (GA vs MILP)

✓ GA results using Python(Pop size : 1000, Gen size : 300, Pm : 30%)

Best feasible solution = 138 days

Best feasible solution =

[0, 1, 13, 2, 15, 3, 4, 9, 5, 23, 50, 7, 8, 17, 38, 11, 14, 20, 21, 16, 24, 28, 33, 29, 12, 10, 26, 32, 27, 6, 34, 19, 41, 25, 18, 31, 22, 30, 59, 45, 44, 43, 53,
61, 39, 71, 37, 49, 36, 35, 40, 76, 55, 47, 42, 60, 46, 58, 51, 63, 65, 48, 57, 66, 52, 68, 64, 73, 67, 77, 72, 62, 80, 70, 81, 54, 78, 79, 69, 75, 56, 85, 82,
84, 86, 87, 74, 88, 83, 90, 89, 91] 25/30

4. Performance results

• Performance comparison results (GA vs MILP)

✓ MILP results using Python - CPLEX

※ FailLimit parameter specifies the maximum number of failures that the solver tolerates before it stops searching for a solution.

➢ Best feasible value = [156, 152, 152, 151, 150, 148, 146, 143, 141, 140, 138, 138, 137, 137, 136, 136]

➢ FailLimit = [100, 500, 1000, 5000, 10000, 50000, 100000, 200000, 500000, 1000000, 10000000, 100000000, 1000000000,
2000000000, 3000000000, 4000000000]

26/30

4. Performance results

• Performance comparison results (GA vs MILP)

✓ MILP result using Python - CPLEX

Best feasible solution =
[0 1 2 3 13 9 4 8 15 11 16 5 19 20 23 7 50 21 24 43 17 14 33 12 10 26 22 38 28 30 59 27 29 18 41 45 31 32 37 34 36 71 48 53 39 6 35 49
25 44 55 60 40 63 47 76 42 73 61 46 52 66 77 65 58 68 57 56 69 70 80 74 67 62 51 72 83 54 64 81 78 79 84 86 75 85 87 82 90 88 89 91]

FailLimit/day = 4000000000 / 136

27/30

5. Conclusion & future plan

5. Conclusion & future plan

• Overall analysis results

✓ Improvement of GA method (considering variety of operators and characteristics of RCPSP)

✓ Comparison of performance with other metaheuristic models
(such as Adaptive Large Neighbourhood Search(ALNS) etc)

※ ALNS is characterized by its ability to dynamically adjust the neighborhood structure during the search process, aiming to efficiently explore the solution space.

✓ With the increase in generation, population and mutation probability,
there is an observed tendency for the fitness value to increase.
However, it falls short of reaching the performance of MILP

• Future improvement and enhancement plans

※ The currently designed GA is judged to have difficulty deviating from the local optimal area

✓ However, the fact that GA shows a difference of only 2 days compared to
CPLEX in solving the challenging RCPSP problem with 90 activities indicates
the effective performance of GA.

※ when applying ALNS, a value of 141 is found (ref . Muller, LF. 2009)

29/30

Thanks

	슬라이드 1: Term Project Final Presentation [Resource-Constrained Project Scheduling Problem, RCPSP]
	슬라이드 2: Contents
	슬라이드 3
	슬라이드 4: 1. What is the RCPSP?
	슬라이드 5: 1. What is the RCPSP?
	슬라이드 6: 1. What is the RCPSP?
	슬라이드 7: 1. What is the RCPSP?
	슬라이드 8: 1. What is the RCPSP?
	슬라이드 9: 1. What is the RCPSP?
	슬라이드 10
	슬라이드 11: 2. Problem Definition
	슬라이드 12: 2. Problem Definition
	슬라이드 13
	슬라이드 14: 3. GA design
	슬라이드 15: 3. GA design
	슬라이드 16: 3. GA design
	슬라이드 17
	슬라이드 18: 4. Performance results
	슬라이드 19: 4. Performance results
	슬라이드 20: 4. Performance results
	슬라이드 21: 4. Performance results
	슬라이드 22: 4. Performance results
	슬라이드 23: 4. Performance results
	슬라이드 24: 4. Performance results
	슬라이드 25: 4. Performance results
	슬라이드 26: 4. Performance results
	슬라이드 27: 4. Performance results
	슬라이드 28
	슬라이드 29: 5. Conclusion & future plan
	슬라이드 30

